• Title/Summary/Keyword: Monocular SLAM

Search Result 10, Processing Time 0.026 seconds

A Simple Framework for Indoor Monocular SLAM

  • Nguyen, Xuan-Dao;You, Bum-Jae;Oh, Sang-Rok
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.62-75
    • /
    • 2008
  • Vision-based simultaneous localization and map building using a single camera, while compelling in theory, have not until recently been considered extensive in the practical realm of the real world. In this paper, we propose a simple framework for the monocular SLAM of an indoor mobile robot using natural line features. Our focus in this paper is on presenting a novel approach for modeling the landmark before integration in monocular SLAM. We also discuss data association improvement in a particle filter approach by using the feature management scheme. In addition, we take constraints between features in the environment into account for reducing estimated errors and thereby improve performance. Our experimental results demonstrate the feasibility of the proposed SLAM algorithm in real-time.

Monocular Vision and Odometry-Based SLAM Using Position and Orientation of Ceiling Lamps (천장 조명의 위치와 방위 정보를 이용한 모노카메라와 오도메트리 정보 기반의 SLAM)

  • Hwang, Seo-Yeon;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • This paper proposes a novel monocular vision-based SLAM (Simultaneous Localization and Mapping) method using both position and orientation information of ceiling lamps. Conventional approaches used corner or line features as landmarks in their SLAM algorithms, but these methods were often unable to achieve stable navigation due to a lack of reliable visual features on the ceiling. Since lamp features are usually placed some distances from each other in indoor environments, they can be robustly detected and used as reliable landmarks. We used both the position and orientation of a lamp feature to accurately estimate the robot pose. Its orientation is obtained by calculating the principal axis from the pixel distribution of the lamp area. Both corner and lamp features are used as landmarks in the EKF (Extended Kalman Filter) to increase the stability of the SLAM process. Experimental results show that the proposed scheme works successfully in various indoor environments.

Performance Analysis of Optimization Method and Filtering Method for Feature-based Monocular Visual SLAM (특징점 기반 단안 영상 SLAM의 최적화 기법 및 필터링 기법 성능 분석)

  • Jeon, Jin-Seok;Kim, Hyo-Joong;Shim, Duk-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.182-188
    • /
    • 2019
  • Autonomous mobile robots need SLAM (simultaneous localization and mapping) to look for the location and simultaneously to make the map around the location. In order to achieve visual SLAM, it is necessary to form an algorithm that detects and extracts feature points from camera images, and gets the camera pose and 3D points of the features. In this paper, we propose MPROSAC algorithm which combines MSAC and PROSAC, and compare the performance of optimization method and the filtering method for feature-based monocular visual SLAM. Sparse Bundle Adjustment (SBA) is used for the optimization method and the extended Kalman filter is used for the filtering method.

Map Alignment Method in Monocular SLAM based on Point-Line Feature (특징점과 특징선을 활용한 단안 카메라 SLAM에서의 지도 병합 방법)

  • Back, Mu Hyun;Lee, Jin Kyu;Moon, Ji Won;Hwang, Sung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • In this paper, we propose a map alignment method for maps generated by point-line monocular SLAM. In the proposed method, the information of feature lines as well as feature points extracted from multiple maps are fused into a single map. To this end, the proposed method first searches for similar areas between maps via Bag-of-Words-based image matching. Thereafter, it calculates the similarity transformation between the maps in the corresponding areas to align the maps. Finally, we merge the overlapped information of multiple maps into a single map by removing duplicate information from similar areas. Experimental results show that maps created by different users are combined into a single map, and the accuracy of the fused map is similar with the one generated by a single user. We expect that the proposed method can be utilized for fast imagery map generation.

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.

Visual SLAM using Local Bundle Optimization in Unstructured Seafloor Environment (국소 집단 최적화 기법을 적용한 비정형 해저면 환경에서의 비주얼 SLAM)

  • Hong, Seonghun;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 2014
  • As computer vision algorithms are developed on a continuous basis, the visual information from vision sensors has been widely used in the context of simultaneous localization and mapping (SLAM), called visual SLAM, which utilizes relative motion information between images. This research addresses a visual SLAM framework for online localization and mapping in an unstructured seabed environment that can be applied to a low-cost unmanned underwater vehicle equipped with a single monocular camera as a major measurement sensor. Typically, an image motion model with a predefined dimensionality can be corrupted by errors due to the violation of the model assumptions, which may lead to performance degradation of the visual SLAM estimation. To deal with the erroneous image motion model, this study employs a local bundle optimization (LBO) scheme when a closed loop is detected. The results of comparison between visual SLAM estimation with LBO and the other case are presented to validate the effectiveness of the proposed methodology.

Real-time Simultaneous Localization and Mapping (SLAM) for Vision-based Autonomous Navigation (영상기반 자동항법을 위한 실시간 위치인식 및 지도작성)

  • Lim, Hyon;Lim, Jongwoo;Kim, H. Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.483-489
    • /
    • 2015
  • In this paper, we propose monocular visual simultaneous localization and mapping (SLAM) in the large-scale environment. The proposed method continuously computes the current 6-DoF camera pose and 3D landmarks position from video input. The proposed method successfully builds consistent maps from challenging outdoor sequences using a monocular camera as the only sensor. By using a binary descriptor and metric-topological mapping, the system demonstrates real-time performance on a large-scale outdoor dataset without utilizing GPUs or reducing input image size. The effectiveness of the proposed method is demonstrated on various challenging video sequences.

Obstacle Avoidance for Unmanned Air Vehicles Using Monocular-SLAM with Chain-Based Path Planning in GPS Denied Environments

  • Bharadwaja, Yathirajam;Vaitheeswaran, S.M;Ananda, C.M
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • Detecting obstacles and generating a suitable path to avoid obstacles in real time is a prime mission requirement for UAVs. In areas, close to buildings and people, detecting obstacles in the path and estimating its own position (egomotion) in GPS degraded/denied environments are usually addressed with vision-based Simultaneous Localization and Mapping (SLAM) techniques. This presents possibilities and challenges for the feasible path generation with constraints of vehicle dynamics in the configuration space. In this paper, a near real-time feasible path is shown to be generated in the ORB-SLAM framework using a chain-based path planning approach in a force field with dynamic constraints on path length and minimum turn radius. The chain-based path plan approach generates a set of nodes which moves in a force field that permits modifications of path rapidly in real time as the reward function changes. This is different from the usual approach of generating potentials in the entire search space around UAV, instead a set of connected waypoints in a simulated chain. The popular ORB-SLAM, suited for real time approach is used for building the map of the environment and UAV position and the UAV path is then generated continuously in the shortest time to navigate to the goal position. The principal contribution are (a) Chain-based path planning approach with built in obstacle avoidance in conjunction with ORB-SLAM for the first time, (b) Generation of path with minimum overheads and (c) Implementation in near real time.

ARVisualizer : A Markerless Augmented Reality Approach for Indoor Building Information Visualization System

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.455-465
    • /
    • 2008
  • Augmented reality (AR) has tremendous potential in visualizing geospatial information, especially on the actual physical scenes. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or ubiquitous marker based approaches. Although there are several papers written with vision based markerless tracking, previous approaches provide fairly good results only in largely under "controlled environments." Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed Radio Frequency (RF) based tracking and localization. However, it does cause deployment problems of large RF-based sensors and readers. In this paper, we present a noble markerless AR approach for indoor (possible outdoor, too) navigation system only using monoSLAM (Monocular Simultaneous Localization and Map building) algorithm to full-fill our grand effort to develop mobile seamless indoor/outdoor u-GIS system. The paper briefly explains the basic SLAM algorithm, then the implementation of our system.

  • PDF

Localization of A Moving Vehicle using Backward-looking Camera and 3D Road Map (후방 카메라 영상과 3차원 도로지도를 이용한 이동차량의 위치인식)

  • Choi, Sung-In;Park, Soon-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.160-173
    • /
    • 2013
  • In this paper, we propose a new visual odometry technique by combining a forward-looking stereo camera and a backward-looking monocular camera. The main goal of the proposed technique is to identify the location of a moving vehicle which travels long distance and comes back to the initial position in urban road environments. While the vehicle is moving to the destination, a global 3D map is updated continuously by a stereo visual odometry technique using a graph theorem. Once the vehicle reaches the destination and begins to come back to the initial position, a map-based monocular visual odometry technqieu is used. To estimate the position of the returning vehicle accurately, 2D features in the backward-looking camera image and the global map are matched. In addition, we utilize the previous matching nodes to limit the search ranges of the next vehicle position in the global map. Through two navigation paths, we analyze the accuracy of the proposed method.