• Title/Summary/Keyword: Monoclinic $VO_2$

Search Result 19, Processing Time 0.024 seconds

Study on the Growth of Monoclinic VO2 Phase Applicable for Thermochromic Ceramic Tile

  • Jung, DaeYong;Kim, Ungsoo;Cho, Wooseok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.361-365
    • /
    • 2015
  • Vanadium dioxide ($VO_2$) of monoclinic phase exhibits Metal Insulator Phase Transition (MIPT) phenomenon involving a sharp change in electrical and optical properties at $68^{\circ}C$. Solution-based process is applied to form uniform $VO_2$ coating layer on ceramic tiles. This can selectively block the near-infrared light to possibly reduce the energy loss and prevent dew condensation caused by the temperature difference. Heat treatment conditions including temperature and dwell time were examined to obtain a monoclinic $VO_2$ single phase. Both rutile and monoclinic $VO_2$ phases were observed from in the tiles post-annealed below $700^{\circ}C$. Desired monoclinic $VO_2$ single phase was grown in the tiles heat treated at $750^{\circ}C$. Nano facets of irregular size were observed in the monoclinic $VO_2$ phase involving the phase-transition. Grain growth of monoclinic $VO_2$ phase was observed as a function of dwell time at $750^{\circ}C$.

The Phase Transition and Thermochromic Characteristics of W/Mg-codoped Monoclinic VO2 Nanoparticle and Its Composite Film

  • Park, Heesun;Kim, Jongmin;Jung, Young Hee;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • Monoclinic $VO_2(M)$ nanoparticles codoped with 1.5 at. % W and 2.9 at. % Mg were synthesized by the hydrothermal treatment and post-thermal transformation method of $V_2O_5-H_2C_2O_4-H_2O$ with $Na_2WO_4$ and $Mg(NO_3)_2$. The composite thin film of the W/Mg-codoped $VO_2(M)$ with a commercial acrylic block copolymer was also prepared on PET substrate by wet-coating method. The reversible phase transition characteristics of the codoped $VO_2(M)$ nanoparticles and the composite film were investigated from DSC, resistivity and Vis-NIR transmittance measurements compared with the undoped and Wdoped $VO_2(M)$ samples. Mg-codoping into W-doped $VO_2(M)$ nanoparticles synergistically enhanced the transition characteristics by increasing the sharpness of transition while the transition temperature ($T_c$) lowered by W-doping was maintained. The codoped composite film showed the prominently enhanced NIR switching efficiency compared to only W-doped $VO_2(M)$ film with a lowered $T_c$.

Synthesis of Bismuth Vanadate as Visible-light Photocatalyst by Precipitation Reaction (침전 반응에 의한 가시광 광촉매 Bismuth Vanadate 합성)

  • Kim, Sang-Mun;Lee, Jae-Yong;Mun, Choo-Yeun;Lee, Hean-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.630-635
    • /
    • 2011
  • Bismuth vanadate($BiVO_4$) with monoclinic phase as photocatalyst under visible light is synthesized by precipitation reaction in hot water. Properties such as crystal phase, particle morphology and visual light absorbance as well as the effects of thermal treatment for $BiVO_4$ powders are investigated. $BiVO_4$ powders with both single monoclinic phase and 0.2 ${\mu}m$ in particle size are synthesized when precipitate is stirred in water for 5 h at 95$^{\circ}C$. Well-developed monoclinic phase and light absorption property under 535 nm are observed as a result of thermal treatment for 1 h at 300$^{\circ}C$ after precipitation reaction in water for 5 h at 95$^{\circ}C$. Degradation of monoclinic crystal is found in firing above 350$^{\circ}C$, and particle growth is occurred in firing above 550$^{\circ}C$.

Observation of Unusual Structural Phase Transition in $VO_2$ Thin Film on GaN Substrate

  • Yang, Hyeong-U;Son, Jeong-In;Cha, Seung-Nam;Kim, Jong-Min;Gang, Dae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.573-573
    • /
    • 2012
  • High quality $VO_2$ thin films were successfully grown on GaN substrate by optimizing oxygen partial pressure during the growth using RF sputtering technique. The $VO_2$ thin film grown on GaN substrate exhibited an unusual metal insulator transition behavior, which was known to be observed only either in doped sample or under uniaxial stress. Raman spectra also confirmed that metal insulator transition occurred from monoclinic M1 to rutile R phase via monoclinic M2 phase with increasing temperature. We believe that large lattice mismatch between $VO_2$ and GaN substrate may cause M2 phase to be thermodynamically stable. Optical transmittance and its electrical switching behavior were carefully investigated to elucidate the underlying physics of its metal insulator transition behavior. This study may lead to a unique opportunity to better understand the growth mechanism of M2 phase dominant $VO_2$ thin films.

  • PDF

Sol-gel growth and structural, electrical, and optical properties of vanadium-based oxide thin films (바나듐 옥사이드 박막의 성장 및 그 구조적, 전기적, 광학적 특성)

  • Park, Young-Ran;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.534-540
    • /
    • 2006
  • Thin films of $V_2O_3$, $VO_2$, and $V_2O_5$ were obtained from a single precursor solution through post-annealing processes under different annealing conditions. As annealed in air, the deposited films became $V_2O_5$ with orthorhombic crystal structure, while they were $V_2O_3$ and $VO_2$ with rhombohedral and monoclinic crystal structure as annealed in vacuums with base pressure of $1{\times}10^{-6}$ Torr and with 10 mTorr $O_2$ pressure, respectively. Electrical and optical measurements indicated that the $V_2O_5$ and $VO_2$ films are semiconducting, while the $V_2O_3$ films are metallic at room temperature. Chromium doping in $VO_2$ resulted in a decrease of the resistivity and changed the conduction type from n-type to p-type. 10% Cr-doped $VO_2$ films were found to have orthorhombic crystal structure, which is different from that of the undoped $VO_2$. Spectral features in the optical absorption spectra of all the films were interpreted as the transitions involving O 2p and V 3d bands. The crystal-field splittings between $t_{2g}$ and $e_g$ states of the V 3d bands are estimated to be about 1.5 and 1.0 eV for $V_2O_5$ and $VO_2$, respectively.

Synthesis and Characterization of Nb, Mo-doped and Nb/Mo-codoped Monoclinic VO2 Nanoparticles and Their Thin Films by Hydrothermal/Post-Thermal Transformation and Wet-Coating Method

  • Kim, Jongmin;Jung, Young Hee;Kwak, Jun Young;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.94-101
    • /
    • 2019
  • Nb, Mo-doped and Nb/Mo-codoped $VO_2(M)$ nanocrystallites with various doping levels were synthesized for the first time by a hydrothermal and post thermal transformation method. The reversible phase transition characteristics of those doped $VO_2(M)$ was comparatively investigated. Nb-doping of $VO_2(M)$ by this method resulted in a very efficient lowering of the transition temperature ($T_c$) with a rate of $-16.7^{\circ}C/at.%$ that is comparable to W-doping, while Mo-doping did not give a serious reduction of $T_c$ with only a rate of $-5.1^{\circ}C/at.%$. Nb/Mo-codoping gave a similar result to Nb-doping without a noticeable difference. The thin films of Nb-doped and Nb/Mo-codoped $VO_2(M)$ with a thickness of ca. 120 nm were prepared by a wet-coating of the nanoparticle-dispersed solutions. Those films showed a good thermochromic modulation of near infrared radiation with 30-35% for Nb-doped $VO_2(M)$ and 37-40% for Nb/Mo-codoped ones. Nb/Mo-codoped $VO_2(M)$ film showed slightly enhanced thermochromic performance compared with Nb-doped $VO_2(M)$ film.

X-Ray and NMR Studies of Vanadium(V)-Nitrilotriacetate Complex (바나듐(V)-니크릴로트리아세테이트 착물의 X-선 및 핵자기공명 연구)

  • Lee, Man-Ho;Jeong, Woo-Won
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.196-202
    • /
    • 1997
  • New vanadium(V) complex, $(NH_4)_2[VO_2NTA]$, has been synthesized and its structure has been determined by solution and solid-state NMR spectroscopies as well as X-ray crystallography. The unit cell of the monoclinic crystals contains four complexes with $a=6.923(1){\AA}$, $b=8.824(2){\AA}$, $c=19.218(11){\AA}$ and ${\beta}=91.60(3)^{\circ}$ in the space group of $P2_1/n$. The $[VO_2NTA]^{2-}$ anion has distorted octahedral geometry with cis-$VO_2$ moiety. It is confirmed that the octahedral geometry is retained in both of solution and solid-state complexes.

  • PDF

Tunable Metal-Insulator Phase Transition in $VO_2$ Nanowires

  • Seong, Won-Kyung;Lee, Ji-Yeong;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.385-385
    • /
    • 2012
  • Understanding the thermodynamics and structural transformation during the Metal-Insulator Transition (MIT) is critical to better understand the underlying physical origin of phase transition in the vanadiumdioxide ($VO_2$). Here, through the temperature-dependent in-situ high resolutiontransmission electron microscopy (HR-TEM), and systematic electrical transport study, we have shown that the tunable MIT transition of $VO_2$ nanowires is strongly affected by interplay between strain and domain nucleation by ion beam irradiation. Surprsingly, we have also observed that the $VO_2$ rutile (R) metallic phase could form directly in a strain-induced metastable monoclinic (M2) phase. These insights open the door toward more systematic approaches to synthesis for $VO_2$ nanostructures in desired phase and to use for applications including ultrafast optical switching, smart window, metamaterial, resistance RAM and synapse devices.

  • PDF

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • Hong, Ung-Gi;Jang, Seong-Jin;Park, Jong-Bae;Bae, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

Thermochromic Property of Tungsten Doped VO2 Prepared by Hydrothermal Method (수열합성법으로 제조된 텅스텐이 도핑된 VO2의 열변색 특성)

  • An, Ba Ryong;Lee, Gun-Dae;Son, Dae Hee;Lee, Seung Ho;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.611-615
    • /
    • 2013
  • Vanadium oxide ($VO_2$) and tungsten-doped vanadium oxide (W-$VO_2$) powder, well known as thermochromic materials, were prepared from vanadium pentoxide ($V_2O_5$) and oxalic acid dihydrate by hydrothermal and calcination process. The crystal structure and thermochromic property of samples were analyzed using FE-SEM, XRD, XPS, DSC, and UV-Vis-NIR spectroscopy. With increasing the doping amount of W, the phase transition temperature of W-$VO_2$ sample decreased from $70^{\circ}C$ to $42^{\circ}C$. When heating W-$VO_2$ sample above the phase transition temperature, the UV-Vis-NIR spectrum was not changed in the visible range and shifted towards a low transparency in the full name (NIR) region.