• Title/Summary/Keyword: Monochromatic X-ray

Search Result 25, Processing Time 0.022 seconds

Virtual Monochromatic Image Quality from Dual-Layer Dual-Energy Computed Tomography for Detecting Brain Tumors

  • Shota Tanoue;Takeshi Nakaura;Yasunori Nagayama;Hiroyuki Uetani;Osamu Ikeda;Yasuyuki Yamashita
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.951-958
    • /
    • 2021
  • Objective: To evaluate the usefulness of virtual monochromatic images (VMIs) obtained using dual-layer dual-energy CT (DL-DECT) for evaluating brain tumors. Materials and Methods: This retrospective study included 32 patients with brain tumors who had undergone non-contrast head CT using DL-DECT. Among them, 15 had glioblastoma (GBM), 7 had malignant lymphoma, 5 had high-grade glioma other than GBM, 3 had low-grade glioma, and 2 had metastatic tumors. Conventional polychromatic images and VMIs (40-200 keV at 10 keV intervals) were generated. We compared CT attenuation, image noise, contrast, and contrast-to-noise ratio (CNR) between tumor and white matter (WM) or grey matter (GM) between VMIs showing the highest CNR (optimized VMI) and conventional CT images using the paired t test. Two radiologists subjectively assessed the contrast, margin, noise, artifact, and diagnostic confidence of optimized VMIs and conventional images on a 4-point scale. Results: The image noise of VMIs at all energy levels tested was significantly lower than that of conventional CT images (p < 0.05). The 40-keV VMIs yielded the best CNR. Furthermore, both contrast and CNR between the tumor and WM were significantly higher in the 40 keV images than in the conventional CT images (p < 0.001); however, the contrast and CNR between tumor and GM were not significantly different (p = 0.47 and p = 0.31, respectively). The subjective scores assigned to contrast, margin, and diagnostic confidence were significantly higher for 40 keV images than for conventional CT images (p < 0.01). Conclusion: In head CT for patients with brain tumors, compared with conventional CT images, 40 keV VMIs from DL-DECT yielded superior tumor contrast and diagnostic confidence, especially for brain tumors located in the WM.

AN ANALYTICAL STUDY ON THE PHYSICO-CHEMICAL CHARACTERISTICS OF CARIOUS DENTIN (우식상아질(齲蝕象牙質)의 물리화학적(物理化學的) 특성(特性)에 관(關)한 분석(分析) 연구(硏究))

  • Han, Jong-Soo;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.65-76
    • /
    • 1986
  • Carious dentin can be classified, on the basis of their clinical characteristics, into three groups; sound, sclerotic and active carious dentin. Active carious dentin differs from sclerotic dentin by its abscence of variable bacteria within tubles and amount of chemical content. But the apatite molecules of active carious dentin are not fully studied. The purpose of this study was to observed the physico-chemical characteristics of deep carious dentin. The samples of sound, sclerotic and active carious dentin were obtained respectively from 300 freshly extracted carious teeth. Bacterial-rich zone of superficial soft dentin layer was removed with hand instruments from all samples in advance. The samples were powdered and sieved (200 mesh) before analyses. Identification and estimation of the crystallinity of the samples were carried with X-ray diffraction and infrared absorption analyses. Measurements were made on a Rigaku Denki (Rigaku, geiger flex III, Japan) X-ray diffractometer with Cu-target at 30 Kv, 30 mA and are traced on a monochromatic tracer. Infrared absorption analysis was made on FT-IR spectrophometer (Nicolet Instrument Co.) using KBr pellets containing the samples and was recorded on data process (Model IR-80. Nicolet Instrument, Co). The following conclusions were as follows; 1. The nature of the main inorganic structure of sound, sclerotic and active carious dentin proved to be hydroxyapatite. 2. It was difficult to determine the identification due to their crystallinity of sound, sclerotic and active carious dentin. But sound dentin was the highest in crystallinity among them. 3. The magnesium whitlockite was to be found in active carious dentin, but not in sound and sclerotic dentin. 4. The carbonate content was highest in sound dentin, but the lowest was in active carious dentin.

  • PDF

Organic Nanotube Induced by Photocorrosion of CdS Nanorod

  • Choi, Sung-Won;Yoon, Joong-Ho;An, Myoung-Jin;Chae, Won-Sik;Cho, Hyeon-Mo;Choi, Moon-Gun;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.983-985
    • /
    • 2004
  • PMMA-coated CdS nanorod was prepared by encapsulation of CdS nanorod through the polymerization process of PMMA on the surface of CdS nanorod. PMMA organic nanotube was then obtained from the elimination of the CdS nanorod by the photocorrosion. For the photocorrosion reaction of the CdS nanorod, monochromatic light was irradiated to the oxygen-saturated aqueous methyl viologen solution with PMMAcoated CdS nanorod. Photocorrosion reactions of PMMA-coated CdS nanorod were investigated and characterized by utilizing UV-Vis absorption, X-ray diffraction (XRD) and scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images.

Elastic Behavior of Zeolite Mesolite under Hydrostatic Pressure (제올라이트 메소라이트의 수압 하 탄성특성)

  • Lee, Yong-Jae;Lee, Yong-Moon;Seoung, Dong-Hoon;Jang, Young-Nam
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.509-512
    • /
    • 2009
  • Powder diffraction patterns of the zeolite mesolite ($Na_{5.33}Ca_{5.33}Al_{16}Si_{24}O_{80}{\cdot}21.33H_2O$), with a natrolite framework topology were measured as a function of pressure up to 5.0 GPa using a diamond-anvil cell and a $200{\mu}m$-focused monochromatic synchrotron X-ray. Under the hydrostatic conditions mediated by pore-penetrating alcohol and water mixture, the elastic behavior of mesolite is characterized by continuous volume expansion between ca. 0.5 and 1.5 GPa, which results from expansion in the ab-plane and contraction along the c-axis. Subsequent to this anomalous behavior, changes in the powder diffraction patterns suggest possible reentrant order-disorder transition. The ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis attribute to the $3b_{natrolite}$ cell below 1.5 GPa. When the volume expansion is completed above 1.5 GPa, such characteristic ordering reflections disappear and the $b_{natrolite}$ cell persists with marginal volume contraction up to ca. 2.5 GPa. Further increase in pressure leads to progressive volume contraction and appears to generate another set of superlattice reflections in the $3c_{natrolite}$ cell. This suggests that mesolite in the pressure-induced hydration state experiences order-disorder-order transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels.

Isotropic Compression Behavior of Lawsonite Under High-pressure Conditions (로소나이트(Lawsonite)의 압력에 따른 등방성 압축거동 연구)

  • Im, Junhyuck;Lee, Yongjae
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • Powder samples of natural lawsonite (Ca-lawsonite, $CaAl_2Si_2O_7(OH)_2{\cdot}H_2O$) was studied structurally up to 8 GPa at room temperature using monochromatic synchrotron X-ray powder diffraction and a diamond anvil cell (DAC) with a methanol : ethanol : water (16 : 3 : 1 by volume) mixture solution as a penetrating pressure transmitting medium (PTM). Upon pressure increase, lawsonite does not show any apparent pressure induced expansion (PIE) or phase transition. Pressure-volume data were fitted to a second-order Birch-Murnaghan equation of state using a fixed pressure derivative of 4 leading to a bulk modulus ($B_0$) of 146(6) GPa. This compression is further characterized to be isotropic with calculated linear compressibilities of ${\beta}^a=0.0022GPa^{-1}$, ${\beta}^b=0.0024GPa^{-1}$, and ${\beta}^c=0.0020GPa^{-1}$.