• Title/Summary/Keyword: Monitoring program Sensor

Search Result 158, Processing Time 0.027 seconds

Design of a Condition-based Maintenance Policy Using a Surrogate Variable (대용변수를 이용한 상태기반 보전정책의 설계)

  • Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.299-312
    • /
    • 2021
  • Purpose: We provide a condition-based maintenance policy where a surrogate variable is used for monitoring system performance. We constructed a risk function by taking into account the risk and losses accompanied with erroneous decisions. Methods: Assuming a unique degradation process for the performance variable and its specific relationship with the surrogate variable, the maintenance policy is determined. A risk function is developed on the basis of producer's and consumer's risks accompanied with each decision. With a strategic safety factor considered, the optimal threshold value for the surrogate variable is determined based on the risk function. Results: The condition-based maintenance is analyzed from the point of risk. With an assumed safety consideration, the optimal threshold value of the surrogate variable is provided for taking a maintenance action. The optimal solution cannot be obtained in a closed form. An illustrative numerical example and solution is provided with a source code of R program. Conclusion: The study can be applied to situation where a sensor signal is issued if the system performance begins to degrade gradually and reaches eventually its functional failure. The study can be extended to the case where two or more performance variables are connected to a same surrogate variable. Also estimation of the distribution parameters and risk coefficients should be further studied.

Evaluation of the snow simulations from CLM using satellite-based observations (위성 관측 자료를 활용한 지면모형(CLM)의 적설 모의 평가)

  • Seo, Jungho;Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.332-332
    • /
    • 2022
  • 적설은 지구 기후시스템과 수문순환 과정에서 중요한 역할을 하고 있으며, 겨울철의 적설은 봄철에 녹으면서 식생과 수자원 제공에 큰 영향을 주는 인자로 알려져 있다. 동아시아가 위치한 북반구는 적설량의 90%가 관찰되고 토지의 약 42%가 긴 시간동안 눈으로 덮여 있어 지표 에너지와 물 균형에 영향을 주고, 특히 수자원 관리를 위한 유출이나 토양수분과 같은 수문 인자에 큰 영향을 미친다. 따라서 적설을 정확하게 예측하는 것은 수자원 관리에 있어 매우 중요한 일이다. 한편, 이러한 수문 순환을 정확히 예측하기 위해 수문 분야에서는 지면모형(Land Surface Model, LSM)을 많이 사용하고 있다. 지면모형은 지표면과 대기 사이의 상호작용을 모의하기 위해 개발되었고, 에너지, 수증기, 이산화탄소 등의 다양한 인자들의 교환에 대하여 해석하며, 토양수분, 유출량 등의 수자원 분야의 주요 인자들을 산출하여 수자원 관리에 적극적으로 활용되고 있다. 이에 본 연구에서는 National Center for Atmospheric Research(NCAR)에서 개발한 Community Land Model(CLM)을 사용하여 2001년부터 2016년까지 25km의 공간해상도로 동아시아 지역의 적설 모의를 평가하였다. CLM의 적설 모의 평가 인자는 Snow depth, Snow water equivalent의 2가지 인자를 대상으로 수행하였고, 모의 성능 평가를 위한 관측 자료로 NASA Aqua와 JAXA GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer(AMSR) 센서에서 제공하는 위성 관측 자료와 Defense Meteorological Satellite Program(DMSP) 위성의 Special Sensor Microwave/Imager(SSM/I) 센서와 Nimbus-7 위성의 Scanning Multichannel Microwave Radiometer(SMMR) 센서에서 제공하는 위성 관측 자료를 기반으로 지상 기상 관측소 자료와 조합하여 재생성한 European Space Agency Global Snow Monitoring for Climate Research (ESA GlobSnow)의 자료를 사용하였다. 그 결과 CLM의 적설 모의는 과대 추정하는 것을 알 수 있었으며, 본 연구의 결과는 동아시아 적설 모의 개선을 위해 자료 동화를 사용하는 후속 연구의 기초자료로 사용할 수 있다.

  • PDF

Development of Device Measuring Real-time Air Flow in Greenhouse (온실 공기유동 계측 시스템 개발)

  • Noh, Jae Seung;Kwon, Jinkyoung;Kim, Yu Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • This study was conducted to develop a device for measuring the air flow by space variation through monitoring program, which acquires data by each point from each environmental sensor located in the greenhouse. The distribution of environmental factors(air temperature, humidity, wind speed, etc.) in the greenhouse is arranged at 12 points according to the spatial variation and a large number of measurement points (36 points in total) on the X, Y and Z axes were selected. Considering data loss and various greenhouse conditions, a bit rate was at 125kbit/s at low speed, so that the number of sensors can be expanded to 90 within greenhouse with dimensions of 100m by 100m. Those system programmed using MATLAB and LabVIEW was conducted to measure distributions of the air flow along the greenhouse in real time. It was also visualized interpolated the spatial distribution in the greenhouse. In order to verify the accuracy of CFD modeling and to improve the accuracy, it will compare the environmental variation such as air temperature, humidity, wind speed and $CO_2$ concentration in the greenhouse.

Implementation and Evaluation of the LUTS Diagnosis System Using FPGA (FPGA를 이용한 LUTS 진단 시스템 구현 및 평가)

  • Jeong, Do-Un;Chung, Wan-Young;Jeon, Gye-Rock
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • The purpose of urodynamic investigation is to determine information on the function of the urinary system. One of the most frequently used measurement procedures in urodynamics is filling and voiding cystometry using invasive method. But in this method transurethral catheter is use and it makes patients uncomfortable. The aim of this study was to implement the system that could evaluate the function of urinary tract with noninvasive and comfortable method. Therefor in this study, a sensor and measuring system were implemented to measure uroflow, urophonography and noninvasive bladder pressure signal during urination for diagnosing the LUTS(lower urinary tract symptoms) using noninvasive method. The implemented system compose of the sensor parts, signal conditioning parts, system control parts using FPGA and PC monitoring program. For the evaluation of the implemented system, the simulation of system's control part was performed and the model system for the lower urinary system was designed. From the evaluation of the model system, the mean error rate of the uroflow measurement part was 1.08% and coefficient of variation was 1,48. And the mean error rate of the noninvasive bladder pressure measurement part was 2.41% and coefficient of variation was 2.81. urophongraphy signal analysis was accomplished in a time domain and frequency domain. Average RMS power was used in a time domain analysis, and MF was used in a frequency domain analysis. From the evaluation of the model system average RMS power and MF was dependent on the occlusion degree significantly and median frequency range of $60{\sim}160Hz$ was correlated with the occlusion.

  • PDF

Study of Sensor Technology Analysis and Site Application Model for 3D-based Global Modeling of Construction Field (건설 시공현장의 3D기반 광대역 모델링을 위한 Sensor 기술 분석과 향후 현장적용 모델 연구)

  • Kwon, Hyuk-Do;Koh, Min-Hyeok;Yoon, Su-Won;Kwon, Soon-Wook;Chin, Sang-Yoon;Kim, Yea-Sang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.938-942
    • /
    • 2007
  • The importance of process improvement under construction has arisen from recent issue, lower productivity in the construction site. The various 3D modeling program is utilized in the procedure of construction as an alternative solution. However, it's still shortage of the consideration about a specific technical application. The purpose of the study in this paper is helpful to improve the productivity of construction site using 3D realization of constructing place as one of extensive modeling technologies, which leads to not only efficient management of construction site allowing people to check the real time situation in the place but also the revitalization of information flow about building process control and prgress, Therefore, I research into modeling algorithm and extensive construction site realization technology. 3D realization of building place would reduce the safety concerns by providing the real time information about construction site, and it could help to access easily to similar project through collecting and appling the database of sites. Furthermore it can be an opportunity to develop the procedure of production in construction industry and to upgrade the image of this field.

  • PDF

Application of Satellite Data Spatiotemporal Fusion in Predicting Seasonal NDVI (위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용)

  • Jin, Yihua;Zhu, Jingrong;Sung, Sunyong;Lee, Dong Kun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Fine temporal and spatial resolution of image data are necessary to monitor the phenology of vegetation. However, there is no single sensor provides fine temporal and spatial resolution. For solve this limitation, researches on spatiotemporal data fusion methods are being conducted. Among them, FSDAF (Flexible spatiotemporal data fusion) can fuse each band in high accuracy.In thisstudy, we applied MODIS NDVI and Landsat NDVI to enhance time resolution of NDVI based on FSDAF algorithm. Then we proposed the possibility of utilization in vegetation phenology monitoring. As a result of FSDAF method, the predicted NDVI from January to December well reflect the seasonal characteristics of broadleaf forest, evergreen forest and farmland. The RMSE values between predicted NDVI and actual NDVI (Landsat NDVI) of August and October were 0.049 and 0.085, and the correlation coefficients were 0.765 and 0.642 respectively. Spatiotemporal data fusion method is a pixel-based fusion technique that can be applied to variousspatial resolution images, and expected to be applied to various vegetation-related studies.

Detection with a SWNT Gas Sensor and Diffusion of SF6 Decomposition Products by Corona Discharges (탄소나노튜브 가스센서의 SF6 분해생성물 검출 및 확산현상에 관한 연구)

  • Lee, J.C.;Jung, S.H.;Baik, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • The detection methods are required to monitor and diagnose the abnormality on the insulation condition inside a gas-insulated switchgear (GIS). Due to a good sensitivity to the products decomposed by partial discharges (PDs) in $SF_6$ gas, the development of a SWNT gas sensor is actively in progress. However, a few numerical studies on the diffusion mechanism of the $SF_6$ decomposition products by PD have been reported. In this study, we modeled $SF_6$ decomposition process in a chamber by calculating temperature, pressure and concentration of the decomposition products by using a commercial CFD program in conjunction with experimental data. It was assumed that the mass production rate and the generation temperature of the decomposition products were $5.04{\times}10^{-10}$ [g/s] and over 773 K respectively. To calculate the concentration equation, the Schmidt number was specified to get the diffusion coefficient functioned by viscosity and density of $SF_6$ gas instead rather than setting it directly. The results showed that the drive potential is governed mainly by the gradient of the decomposition concentration. A lower concentration of the decomposition products was observed as the sensors were placed more away from the discharge region. Also, the concentration increased by increasing the discharge time. By installing multiple sensors the location of PD is expected to be identified by monitoring the response time of the sensors, and the information should be very useful for the diagnosis and maintenance of GIS.

The Implementation of a HACCP System through u-HACCP Application and the Verification of Microbial Quality Improvement in a Small Size Restaurant (소규모 외식업체용 IP-USN을 활용한 HACCP 시스템 적용 및 유효성 검증)

  • Lim, Tae-Hyeon;Choi, Jung-Hwa;Kang, Young-Jae;Kwak, Tong-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.464-477
    • /
    • 2013
  • There is a great need to develop a training program proven to change behavior and improve knowledge. The purpose of this study was to evaluate employee hygiene knowledge, hygiene practice, and cleanliness, before and after HACCP system implementation at one small-size restaurant. The efficiency of the system was analyzed using time-temperature control after implementation of u-HACCP$^{(R)}$. The employee hygiene knowledge and practices showed a significant improvement (p<0.05) after HACCP system implementation. In non-heating processes, such as seasoned lettuce, controlling the sanitation of the cooking facility and the chlorination of raw ingredients were identified as the significant CCP. Sanitizing was an important CCP because total bacteria were reduced 2~4 log CFU/g after implementation of HACCP. In bean sprouts, microbial levels decreased from 4.20 logCFU/g to 3.26 logCFU/g. There were significant correlations between hygiene knowledge, practice, and microbiological contamination. First, personnel hygiene had a significant correlation with 'total food hygiene knowledge' scores (p<0.05). Second, total food hygiene practice scores had a significant correlation (p<0.05) with improved microbiological qualities of lettuce salad. Third, concerning the assessment of microbiological quality after 1 month, there were significant (p<0.05) improvements in times of heating, and the washing and division process. On the other hand, after 2 months, microbiological was maintained, although only two categories (division process and kitchen floor) were improved. This study also investigated time-temperature control by using ubiquitous sensor networks (USN) consisting of an ubi reader (CCP thermometer), an ubi manager (tablet PC), and application software (HACCP monitoring system). The result of the temperature control before and after USN showed better thermal management (accuracy, efficiency, consistency of time control). Based on the results, strict time-temperature control could be an effective method to prevent foodborne illness.