• 제목/요약/키워드: Mongolian cattle

Search Result 12, Processing Time 0.029 seconds

Comparison of Embryo Production Performance and Conception Rate after Embryo Transfer between Mongolian Cattle and Korean Native Cattle

  • Chuluundorj, Gantugs;Lee, Ho-Jun;Son, Dong-Soo;Ganbaatar, Enkhmanlai;Tumur, Baldan;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.319-324
    • /
    • 2017
  • This study is to compare the effect of estrus synchronization and embryo transfer between Korean and Mongolian cattle. Embryos were collected from 9 donors housed in Asan city in South Chungcheong Province, South Korea. Embryos were collected 9 donors from Khushaat sum, Selenge province and Bayanchandmani sum, Tov province in Mongolia. Follicle Stimulating Hormone (FSH), Controlled Internal Drug Release (CIDR) and Prostaglandin (PG) were used for superovulation. Subsequently, Artificial Insemination (AI) was done for donor cow and embryo was collected after 7 and 8 days. Collected embryos were compared between Mongolian and Korean cattle. Finally, good quality and fresh embryos were transferred to 50 and 22 recipients of cows in Korea and Mongolia respectively. The findings show that Korean native cattle each donor cow produced on an average 16.9 embryos and, 10.9 embryos were found transferable. But in case of Mongolia the average production of embryos per donor cow was 8.6 embryos and, 6.2 embryos were found transferable. Embryo collection after 7 and 8 days was not difference in embryo production in Korea. But, in Mongolia embryo production after 8 days was found more efficient than the 7 days. Korean native recipient's cows (74.6%) and Mongolian recipient's cows (71.0%) respectively were found transferable ovarian stage. The result suggested that efficiency of embryo production from the superovulation method treated of Korean cow were higher than the Mongolian cow. The pregnancy rate of Korea native cattle was 72%, which was about 10% higher than that of Mongolia cattle.

Embryo transfer of dorper breed to Mongolian sheep

  • Chuluunbayar Uuganbayar;Tsolmonbaatar Boldsaikhan;Byambasaikhan Danzan-Osor;Ho-Jun Lee;Sang-Hwan Kim;Enkhbolor Barsuren
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.226-230
    • /
    • 2022
  • The sheep can be reproduced by natural mating as well as applied reproductive biotechnology, embryo transfer (ET). However, this method in sheep is influenced by several factors such as season, photoperiod, latitude, temperature, nutrition, and breed. In addition, there is still less research on assisted reproductive technologies in small ruminants, compared to other livestock species such as cattle and pigs. Because there has been a need for an optimization and a continuous improvement of ET techniques in small ruminants. the main objective of this study was to evaluate the conception rate obtained after ET in Mongolian sheep (Dorper breed). After embryo recover, code 1 and 2 embryos (morula or blastocyst stage) for ET in the present study were 63% (63/100) and 24% (24/100), respectively. Then Each single embryo was transferred to a synchronized recipient who prepared by estrous synchronization protocol with fluorogestone acetate-cloprostenol sodium. The results demonstrated that an average conception rate and lambing rate was 35.6% (31/87) and 33.3% (29/87), respectively. Further study is still necessary, but these results indicated that single embryo of Mongolian sheep with the present protocol was enough to conducting ET when the genetically superior sheep were necessary to be expanded.

Review of the Current Status of Pasture-based Livestock Industry in Mongolia

  • Nyamgarav Tseveg-Ochir;Ki-Won Lee;Jae Hoon Woo;Bo Ram Choi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.58-63
    • /
    • 2024
  • Mongolian herders rely significantly on grazing their animals, such as goats, sheep, cattle, horses, yaks, and camels, in broad rangelands throughout the year. The availability of appropriate forage, the amount of hay and forage to be kept, and whether the animals will acquire physical strength from the pasture to make it through the impending cold season are all determined by the meteorological conditions of the year. Herders' principal source of income is animals, therefore preventing mortality is a top priority. In Mongolia, meadows are a major element determining cattle live weight. However, in the summer of 2022, Mongolia faced a drought, which resulted in inadequate pastures and starved cattle. Livestock might lose weight in these situations due to a lack of supplemental feeding.

Genetic Variation and Divergence among Swamp Buffalo, River Buffalo and Cattle: A Microsatellite Survey on Five Populations in China

  • Zhang, Yi;Sun, Dongxiao;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.9
    • /
    • pp.1238-1243
    • /
    • 2008
  • Domestic buffalo and cattle are two extremely important livestock species in worldwide agricultural production. In this paper, to investigate genetic diversity and divergence among swamp buffalo, river buffalo and cattle, 30 microsatellite markers were screened on 168 individuals sampled from five populations. Substantial differences were observed among the three groups of animals with respect to allele frequency distribution, allele size and polymorphism. The cattle sample (Mongolian) showed significantly higher genetic variability (0.674 of gene diversity, p<0.01), and the swamp and river buffalo samples displayed similar degree of genetic variation (0.536 in swamp and 0.546 in river, p = 0.92). Results of both phylogenetic tree and multivariate analysis could distinguish three groups of animals, suggesting their deep evolutionary divergence. Additionally, using $({\delta}{\mu})^2$ genetic distance, we estimated a divergence time of 1.7 million years between swamp and river buffalo that strongly supported distinct genetic origins for the two buffalo types.

Recent Situation of Taeniasis in Mongolia (2002-2012)

  • Davaasuren, Anu;Dorjsuren, Temuulen;Yanagida, Tetsuya;Sako, Yasuhito;Nakaya, Kazuhiro;Davaajav, Abmed;Agvaandaram, Gurbadam;Enkhbat, Tsatsral;Gonchigoo, Battsetseg;Dulmaa, Nyamkhuu;Chuluunbaatar, Gantigmaa;Ito, Akira
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.2
    • /
    • pp.211-214
    • /
    • 2014
  • Epidemiological situation of taeniasis in Mongolia was assessed based on mitochondrial DNA identification of the parasite species. Multiplex PCR was used on a total of 194 proglottid specimens of Taenia species and copro-PCR and loop-mediated isothermal amplification (LAMP) assays were utilized for detection of copro-DNA of 37 fecal samples from taeniasis patients submitted to the Mongolian National Center for Communicable Diseases (NCCD) from 2002 to 2012. In addition, 4 out of 44 calcified cysts in beef kept in formalin since 2003 were evaluated for histopathological confirmation of cattle cysticercosis. All proglottid specimens and stool samples were confirmed to be Taenia saginata by multiplex PCR and by copro-PCR and LAMP, respectively. Cysts collected from cattle were morphologically confirmed to be metacestodes of Taenia species. T. saginata taeniasis was identified from almost all ages from a 2-year-old boy up to a 88-year-old woman and most prominently in 15-29 age group (37%, 74/198) followed by 30-44 age group (34.8%, 69/198 ) from 15 of Mongolia's 21 provinces, while cattle cysticerci were found from 12 provinces. The highest proportion of taeniasis patients was in Ulaanbaatar, the capital of Mongolia.

Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip

  • Sharma, Aditi;Lim, Dajeong;Chai, Han-Ha;Choi, Bong-Hwan;Cho, Yongmin
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.230-233
    • /
    • 2016
  • Linkage disequilibrium (LD) is the non-random association between the loci and it could give us a preliminary insight into the genetic history of the population. In the present study LD patterns and effective population size (Ne) of three Korean cattle breeds along with Chinese, Japanese and Mongolian cattle were compared using the bovine Illumina SNP50 panel. The effective population size (Ne) is the number of breeding individuals in a population and is particularly important as it determines the rate at which genetic variation is lost. The genotype data in our study comprised a total of 129 samples, varying from 4 to 39 samples. After quality control there were ~29,000 single nucleotide polymorphisms (SNPs) for which $r^2$ value was calculated. Average distance between SNP pairs was 1.14 Mb across all breeds. Average $r^2$ between adjacent SNP pairs ranged between was 0.1 for Yanbian to 0.3 for Qinchuan. Effective population size of the breeds based on $r^2$ varied from 16 in Hainan to 226 in Yanbian. Amongst the Korean native breeds effective population size of Brindle Hanwoo was the least with Ne = 59 and Brown Hanwoo was the highest with Ne = 83. The effective population size of the Korean cattle breeds has been decreasing alarmingly over the past generations. We suggest appropriate measures to be taken to prevent these local breeds in their native tracts.

Examination of Availability of Whole Crop Silage TMR for Late Fattening Hanwoo Steers in the Cattle (비육후기 거세한우 용 사료작물 사일리지 TMR의 소 체내 이용성 조사)

  • Jugder, Shinekhuu;Choi, Seong Ho;Lee, Jeong Ju;Lee, Gyeong Geun;Lee, Sang Suk;Song, Man Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The present study was conducted with three ruminally cannulated non-lactating Holstein cattle in a $3{\times}3$ Latin square design to determine the fermentation characteristics and effective degradability (ED) in the rumen, as well as the whole tract digestibility of whole crop silage based total mixed ration (TMR) in comparison with conventional separate feeding of concentrate and rice straw for late fattening Hanwoo steers. The cattle in each group were fed separate feeding of concentrate and rice straw (control), whole crop barley silage based TMR (BS-TMR) or whole crop rye silage based TMR (RS-TMR). The ruminal fermentation characteristics such as pH, ammonia-N concentration and total volatile fatty acid were not affected by the experimental diet. The molar portion of acetate ($C_2$) was lowest in rumen fluid 1 h after feeding when cattle were fed BS-TMR (p<0.033). Molar proportions of propionate ($C_3$), butyrate and $C_2/C_3$ were not influenced by the experimental diet. There were no differences in effective degradability or whole tract digestibility of feed components among any of the experimental diets. The data obtained from the metabolism trial indicate that the feeding value of TMR with BS or RS is equal to that of a conventional separate feeding of concentrate and rice straw.

Artificial Insemination and Embryo Transfer Project to Foster Mongolia Dairy Industry

  • Kwon, Tae-Hyeon;Choi, Byeong-Hyun;Cho, Su-Jin;Tsolmon, Munkhbatar;Durevjargal, Naidansuren;Baldan, Tumur;Min, Chan-Sik;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.24 no.4
    • /
    • pp.289-292
    • /
    • 2009
  • Mongolia has 80% livestock of total agriculture industry, 170,000 farms are engaged, 2,500,000 of cows that were beef and dairy cows are raised. Despite of Mongolian has great application with milk, there are not clear differences between cow and dairy cattle, and the production of milk is also low. But the milk suppliers are varied (horse, sheep, goat, etc), so that the total milk production is 500 thousand ton per year. It's really considerable to improve the breed of owing to many problems with big differences among milk qualities. For carrying out for first year project, artificial insemination project was operated with 3rd grade Holstein semen that were imported from S. Korea, and initiation and field training were also carried out through appropriate AI technique we developed for Mongolia environment. Local information research and MOU conclusion were done with professor D. Altangerel in May $10^{th}{\sim}13^{th}$, 2009, and development for AI technique and AI equipments were supplied for Mongolia breeding and natural environment in July $10^{th}{\sim}17^{th}$ in 2009. All cows were treated by synchronization for AI. To do this, $PGF_{2\alpha}$ injection were treated for luteal phase cow, if it wouldn't work, try again after 11 days. After confirmation of estrus, AI and AI training were carried out with sperm injection in the uterus or cervix by rectum-vagina method which is common worldwide, the most effective artificial insemination technique. If cows were return to next estrus cycle, second AI was carried out about approximately 21 days after artificial insemination. After 2 months, all cows not showing return estrus should be taken pregnancy test. Every pregnant cow will be cared thoroughly. Total 48 cows administrated by $PGF_{2\alpha}$ for synchronization and after 48 hours 45 cows (93.8%) showing estrus were detected and then artificial inseminate them within who 8 cows (27.8%) showed return estrus. Therefore, Using $PGF_2{\alpha}$ for synchronization is effective to use for Mongolia breeding conditions. There are possibility of base for food production after all, including increase of livestock production in Mongolia by improvement of breeding cow with AI and embryo transfer project.

Molecular Characterization and Expression Pattern of Gene IGFBP-5 in the Cashmere Goat (Capra hircus)

  • Wang, X.J.;Shi, J.J.;Yang, J.F.;Liang, Y.;Wang, Y.F.;Wu, M.L.;Li, S.Y.;Guo, X.D.;Wang, Z.G.;Liu, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.606-612
    • /
    • 2012
  • Insulin-like growth factor-binding protein-5 (IGFBP-5) is one of the six members of IGFBP family, important for cell growth, apoptosis and other IGF-stimulated signaling pathways. In order to explore the significance of IGFBP-5 in cells of the Inner Mongolian Cashmere goat (Capra hircus), IGFBP-5 gene complementary DNA (cDNA) was amplified by reverse transcription polymerase chain reaction (RT-PCR) from the animal's fetal fibroblasts and tissue-specific expression analysis was performed by semi-quantitative RT-PCR. The gene is 816 base pairs (bp) in length and includes the complete open reading frame, encoding 271 amino acids (GenBank accession number JF720883). The full cDNA nucleotide sequence has a 99% identity with sheep, 98% with cattle and 95% with human. The amino acids sequence shares identity with 99%, 99% and 99%, respectively. The bioinformatics analysis showed that IGFBP-5 has an insulin growth factor-binding protein homologues (IB) domain and a thyroglobulin type-1 (TY) domain, four protein kinase C phosphorylation sites, five casein kinase II phosphorylation sites, three prenyl group binding sites (CaaX box). The IGFBP-5 gene was expressed in all the tested tissues including testis, brain, liver, lung, mammary gland, spleen, and kidney, suggesting that IGFBP-5 plays an important role in goat cells.

On Phylogenetic Relationships Among Native Goat Populations Along the Middle and Lower Yellow River Valley

  • Chang, H.;Nozawa, K.;Liu, X.L.;Geng, S.M.;Ren, Z.J.;Qin, G.Q.;Li, X.G.;Sun, J.M.;Zheng, H.L.;Song, J.Z.;Kurosawa, Y.;Sano, A.;Jia, Q.;Chen, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.137-148
    • /
    • 2000
  • This paper is based on the 9 goat colonies along the middle and lower Yellow River valley and 7 local goat colonies in the Northeast, Tibet and the Yangtze valley. After collecting the same data about the 22 goat colonies in China and other countries, it establishes and composes the matrix of fuzzy similarity relation describing the genetic similarities of different colonies. It also clusters 38 colonies according to their phylogenetic relationship. The establishment of the matrix and the cluster are effected in terms of the frequency of 18 loci and 43 allelomorphs in blood enzyme and other protein variations. The study proves that the middle Yellow River valley is one of the taming and disseminating centers of domestic goats in the South and East of Central Asia. Compared with other goat populations in this vast area, the native goat populations in the west of Mongolian Plateau, the Qinghai-Tibet Plateau and the middle Yellow River valley share the same origin. The colonies in the lower Yellow River valley and those in the middle valley, however, are relatively remote in their phylogenetic relationship. The native goat colonies in the southeast of Central Asia can be classified into two genetic groups: "East Asia" and "South Asia" and the colonies in Southeast Asia belong to either group.