• Title/Summary/Keyword: Momentum theory

Search Result 206, Processing Time 0.025 seconds

Aerodynamic Design of the SUAV Proprotor (스마트무인기 프롭로터 공력설계)

  • Choi, Seong-Wook;Kim, Yu-Shin;Park, Young-Min;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.16-26
    • /
    • 2005
  • The aerodynamic design of a proprotor for the Smart UAV adopting tiltrotor aircraft concept is conducted in this study. Since proprotor of tiltrotor aircraft is operated at both rotary and fixed wing mode with single configuration rotor, the proprotor has to be designed to meet performance requirements for both flight modes. The aerodynamic design of proprotor is accomplished by combining three sources of data - the proprotor performance data, the aerodynamic data of vehicle, and the performance data of engine. The performance analysis code for proprotor is based on the combined momentum and blade element theory and validated by comparison with the TRAM data. In order to design configuration for a proprotor satisfying requirements for both rotary and fixed wing mode, various kind of performance maps are constructed for many performance and configuration parameters. From the analysis the twist angle of 38 degrees and the solidity of 0.118 are decided to be the optimal geometric parameters for both operating conditions.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Development of an Analysis Program for Small Horizontal Wind Turbines Considering Side Furling and Optimal Torque Scheduling (사이드 펄링과 최적 토크스케줄을 고려한 소형 풍력터빈 해석 프로그램 개발)

  • Jang, Hyeon-Mu;Kim, Dong-Myeong;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.15-31
    • /
    • 2018
  • A program to design a small capacity wind turbine blade is proposed in this study. The program is based on a matlab GUI environment and designed to perform blade design based on the blade element momentum theory. The program is different from other simulation tools available in a point that it can analyze the side-furling power regulation mechanism and also has an algorithm to find out optimal torque schedule above the rated wind speed region. The side-furling power regulation is used for small-capacity horizontal axis wind turbines because they cannot use active pitch control due to high cost which is commonly used for large-capacity wind turbine. Also, the torque schedule above the rated wind speed region should be different from that of the large capacity wind turbines because active pitching is not used. The program developed in this study was validated with the results with FAST which is the only program that can analyze the performance of side-furled wind turbines. For the validation a commercial 10 kW wind turbine data which is available in the literature was used. From the validation, it was found that the performance prediction from the proposed simple program is close to those from FAST. It was also found that the optimal torque scheduling from the proposed program was found to increase the turbine power substantially. Further experimental validation will be performed as a future work.

Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method (FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교)

  • Kim, Ki-Ha;Kim, Dong-Hyun;Kwak, Young-Seob;Kim, Su-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.

A Converging Approach on Investment Strategies, Past Financial Information, and Investors' Behavioral Bias in the Korean Stock Market (주식투자 전략, 과거 재무정보, 투자자의 행태편향에 대한 융합적 연구)

  • Koh, Seunghee
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.205-212
    • /
    • 2016
  • This study attempts to empirically investigate if value strategy and momentum strategy could be improved by using past financial data such as ROE and PER in the Korean stock market. The study observes that both strategies which are refined by the portfolios consisting of companies with higher ROE/PER ratio show higher positive excessive returns than the traditional value strategy and momentum strategy. The study discusses that the excessive returns could be due to investors' behavioral biases such as conservatism, anchoring, confirmation, and herding by using convergent approach based on psychology theory. The results are not consistent with the efficient market hypothesis insisting investors' rational behavior.

Drift Forces on a Freely-Floating Sphere in Water of Finite Depth(I) -Momentum Theorem Method- (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)에 작용(作用)하는 표류력(漂流力)(I) -운동량(運動量) 이론(理論) 방법(方法)-)

  • H.S.,Choi;T.M.,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.33-40
    • /
    • 1983
  • The drift force acting on a freely-floating sphere in water of finite depth is studied within the framework of a linear potential theory. A velocity potential describing fluid motion is determined by distribution pulsating sources and dipoles on the immersed surface of the sphere. Upon knowing values of the potential, hydrodynamic forces are evaluated by integrating pressures over the immersed surface of the sphere. The motion response of the sphere in water of finite depth is obtained by solving the equation of motion. From these results, the drift force on the sphere is evaluated by the momentum theorem, in which a far-field velocity potential is utilized in forms of Kochin function. The drift force coefficient Cdr of a fixed sphere increases monotononically with non-dimensional wave frequency ${\sigma}a$. On the other hand, in freely-floating case, the Cdr has a peak value at ${\sigma}a$ of heave resonance. The magnitude of the drift force coefficient Cdr in the case of finite depth is different form that for deep water, but the general tendency seems to be similar in both cases. It is to note that Cdr is greater than 1.0 when non-dimensional water depth d/a is 1.5 in the case of freely-floating sphere.

  • PDF

THE NUTATION DAMPING CONTROL OF A SPACECRAFT (인공위성의 미동현상 제어에 관한 연구)

  • 이창훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.281-295
    • /
    • 1994
  • In this paper, the Variable Structure System(VSS) theory with new continuous switching dynamic equation is used to design an automatic controller for the active nutation damping in momentum bias stabilized spacecraft. In the application of VSS theory to a linearized multivariable system with the nutation damping systems, there exist some disadvantages such as how to determine the switching gains and how to reduce the chattering phenomina and reaching phase in input and state trajectories. To solve these drawbacks, this paper presents the continuous switching dynamic equation instead of the discontinuous switching logics to obtain the sliding mode. The new design approach is much simpler than the VSS theory. And there do not exist chattering phenomina in this method because the obtained control inputs are continuous. Simultaneously the reaching phase is reduced by a suitable choice of design factor.

  • PDF

A Study on the Configuration Design and the Performance Analysis of the 20kW HAWT based on BEMT (BEMT를 적용한 20kW 수평축 풍력터빈 형상설계 및 성능해석)

  • Kang, Ho-Keun;Nam, Cheong-Do;Lee, Young-Ho;Kim, Beom-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.669-676
    • /
    • 2006
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) is developed by use of BEMT, which is the standard computational technique for prediction of power curves of wind turbines. The Prandtl's tip loss theory is adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil are predicted via X-FOIL and the post stall characteristics of S-809 also are estimated by the Viterna's equations.$^{[13]}$ All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results. performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW(FIL-20) at design conditions. The experimental aerodynamic parameters and the X-FOIL data are used for the power Prediction of the FIL-20 respectively The comparison results shows good agreement in power prediction.

Rod Impact Test for the Determination of Dynamic Yield Stress of Metals (금속재료의 동적항복응력 결정을 위한 봉충격시험법)

  • 민옥기;이정민;남창훈;황재준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.78-89
    • /
    • 1993
  • A new theory based on the modified momentum and energy conservation has been proposed in order to overcome the drawbacks included in previous theories which are used for the determination of dynamic yield stresses and the investigation of dynamic behavior of metals. Then the improvements suggested by the new theory have been manifested through the analysis of the error included in the measurement of deformed length and through the comparison between the new theory, existing theories, and experimental results performed by previous workers. Meanwhile rod impact test has been performed which uses a compressed- air system for the acceleration of flat-ended cylindrical free-cutting brass rods. From the geomtrical measurements of deformed length, the dynamic yield stress of free-cutting brass has determined.

Nam Byung Gil and his Theory of Equations (남병길(南秉吉)의 방정식논(方程式論))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.1-18
    • /
    • 2007
  • In the middle of 19th century, Chosun mathematicians Nam Byung Gil(南秉吉) and Lee Sang Hyuk(李尙爀) studied mathematical structures developed in Song(宋) and Yuan(元) eras on top of their early studies on Jiu zhang suan shu(九章算術) and Shu li jing yun(數理精蘊). Their studies gave rise to a momentum for a prominent development of Chosun mathematics in the century. In this paper, we investigate Nam Byung Gil's JipGoYunDan(輯古演段) and MuIHae(無異解) and then study his theory of equations. Through a collaboration with Lee, Sang Hyuk, he consolidated the eastern and western structure of theory of equations.

  • PDF