• Title/Summary/Keyword: Momentum balance

Search Result 127, Processing Time 0.03 seconds

A Modification of Departure from Nucleate Boiling Model Based on Mass, Energy, and Momentum Balance For Subcooled Flow Boiling in Vertical Tubes

  • Sul, Young-Sil;Lee, Kwang-Won;Ju, Kyong-In;Cheong, Jong-Sik;Yang, Jae-Young
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.108-113
    • /
    • 1996
  • Several analytical models for the departure from nucleate boiling (DNB) phenomenon have been developed during the last decade. Among these, Chang & Lee's model based on a bubble crowding mechanism is remarkable in the fundamental features characterized as the formulation of mass, energy, and momentum balance equation at thermal-hydraulic conditions leading to the DNB. However, Bricard and Souyri remarked that the assumption of stagnant bubbly layer at the DNB condition is questionable and the signs on the axial projections of the momentum fluxes at the core/bubbly layer interface in the momentum balance equations are erroneous. From this remark, Chang & Lee's model has been re-examined and modified by correcting the erroneous treatments in the momentum balance equations and removing the spurious assumptions. The revised model predicts well the extensive DNB data of water in uniformly heated tubes at low qualities and shows more accurate prediction compared with the original model.

  • PDF

Analysis of Globular Transfer Considering Momentum Induced by Flow Within Molten Drop in GMAW (용적 내부의 유동에 의한 모멘텀을 고려한 GMA 용접의 입상용적 이행에 대한 해석)

  • Arif, Nabeel;Lee, Seung-H.;Kang, Moon-J.;Yoo, Choong-D.
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.61-65
    • /
    • 2008
  • The static force balance model (SFBM) has been used to analyze drop transfer in gas metal arc welding. Although the SFBM is capable of predicting the detaching drop size in the globular mode with reasonable accuracy, discrepancy between the calculated and experimental results increases with current. In order to reduce discrepancy, the SFBM is modified by considering the momentum of the molten metal flow, which is generated by the pinch pressure. The momentum increases with smaller drop size and becomes compatible to the electromagnetic force. The modified force balance model (MFBM) predicts the experimental results more accurately, and extends its application to the projected mode.

A Study of the Momentum Balance in the High-Latitude Lower Thermosphere Based on the Ncar-Tiegcm: Dependence on the Interplanetary Magnetic Field (IMF)

  • Kwak, Young-Sil;Ahn, Byung-Ho;Arthur D. Richmond
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.70-70
    • /
    • 2004
  • Lower thermospheric winds are forced primarily by non-uniform solar heating, atmospheric tides and other waves coming from below, and energy and momentum forcing associated with high-latitude magnetosphere-ionosphere coupling, particularly ion drag and Joule heating. To understand the physical processes that control the thermospheric dynamics, we quantify the momentum forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system and examine the resulting momentum balance with the aid of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) developed by the National Center for Atmospheric Research. (omitted)

  • PDF

Supply Chain Replanning Considering Balance of Supply and Demand (수급(需給)균형을 고려한 공급사슬 재계획에 관한 연구)

  • Cho, Min-Kwan;Lee, Young-Hae
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.79-89
    • /
    • 2004
  • Supply Chain (SC) can balance demands with supply activities as executing Supply Chain Planning (SCP). The fluctuated demands, however, will break the balance between demand and supply. It means that the present SCP is useless in responding the changed demands. Thus it is necessary for SCP to be updated with changed demands. We call this procedure as Supply Chain Replanning. However, the existing measures for SC can not deal with the balance between supply and demand so that they can not detect effectively the timing of replanning. For this reason, a new performance measure, Balancing Point, is developed using momentum, a concept of Physics. It can treat the balance between supply and demand. Also, a replanning method based on Balancing Point is proposed. The proposed method is more effective than the existing replanning method, periodic replanning method and net inventory method.

Stabilization of a Two-link Inverted Pendulum with a Rate Gyro (자이로를 이용한 두 링크 도립진자의 자세안정화)

  • Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 2012
  • Human generally uses three methods to keep balance. One of them is using reactive momentum such as swing an upper body or arms. In this study, we proposed a balancing controller for the reactive momentum method using an inverted pendulum. We simplified a human or a humanoid robot as a two-link inverted pendulum having two edges. In addition, we proposed a distinctive condition for controller transition. If a human is pushed, he has to change a balancing controller from using an ankle torque to using a reactive momentum or changing foot placement. When the balancing controller is changed from using an ankle torque to using a reactive momentum, it is required a proper timing to keep a stability and make smooth movement. In the experiment, the proposed controller and distinctive condition were verified.

Prediction of Longshore Current with Set-up/down Effect on a Plane Beach (일정경사 수심단면에서 평균수위의 상승/저하 효과를 고려한 해빈류의 예측)

  • Lee, Cheol-Eung;Kim, Young-Jung;Choi, Han-Kyu
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.277-289
    • /
    • 1997
  • The numerical model for prediction of longshore current with set-up/down effect on a plane beach is developed using the longshore component of the depth-integrated momentum balance equation. To predict the longshore current, the wave height model should first be formulated because the longshore current depends on the wave height directly. Two wave model, regular wave model and random wave model, are developed based on the energy flux balance equation. Also, the numerical model estimating the set-up inside the shoreline is developed using both the on-offshore momentum equation and the moving boundary technique. The numerical models are verified by the analytical solution, and compared with laboratory data. It is found from the comparison that developed models may be predicted accurately the longshore current with set-up/down effect on a plane beach.

  • PDF

Simplified modeling of slide-fed curtain coating flow

  • Jung Hyun Wook;Lee Joo Sung;Hyun Jae Chun;Kim See Jo;Scriven L. E.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.227-233
    • /
    • 2004
  • Simplified model of slide-fed curtain coating flow has been developed and tested in this study. It rests on the sheet profile equations for curtain thickness in curtain flow and its trajectory derived by the integral momentum balance approach of Higgins and Scriven (1979) and Kistler (1983). It also draws on the film profile equation of film thickness variation in flow down a slide. The equations have been solved in finite difference approximation by Newton iteration with continuation. The results show that how inertia (Rey­nolds number), surface tension (capillary number), inclination angle of the slide, and air pressure difference across the curtain affect sheet trajectory and thickness profile. It has been revealed that approximate models can be useful to easily analyze coating flow dynamics without complex computations, giving qualitative agreement with full theory and with experiment.

Galloping Algorithm of Quadruped Robots on Irregular Surface (비평탄면에서의 4 족 로봇의 갤로핑 알고리즘)

  • Shin, Chang-Rok;Park, Jong-Hyeon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.888-893
    • /
    • 2008
  • In This paper proposes the control algorithm for quadruped robots on irregularly sloped uneven surface. Body balance is important in stable running locomotion. Since the body balance is determined by the forces applied at the feet during touchdown phase, the ground reaction force is controlled for stable running. To control the forces at each foot, the desired force is generated. The generated desired force is compared with actual contact force, then, the difference between them modifies the foot trajectory. The desired force is generated by combination of the rate change of the angular and linear momentum at flight. Then the rate change of momentum determines each force distribution. The distribution of the force is carried out by fuzzy logic. The computer simulation is carried out with the commercial software RecurDyn$^{(R)}$. Dynamic model simulation program show that the stable running on the irregularly sloped uneven surface are accomplished by the proposed method.

  • PDF

Balancing between Supply and Demand in Supply Chain Operating (공급사슬 운영에서의 수요와 공급 균형에 관한 연구)

  • Jo Min-Gwan;Lee Yeong-Hae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.371-374
    • /
    • 2004
  • The ultimate purpose of Supply Chain Management (SCM) is maximizing the profits of the overall Supply Chain (SC) through increasing customer satisfaction and decreasing operating cost. It can be successfully accomplished only when SC system balances demands with supply activities coordinated by aggregate planning, mid-term level of Supply Chain Planning(SCP). However, the existing measures to mainly estimate the specific function of SCM are not enough to evaluate the state of SC with respect to the balance between supply and demand in operating. To solve this problem, we develop a new SC performance measure, Balancing Point, using momentum concept. a fundamental knowledge of physics. Momentum concept can explain the relation among objects so that it can consider the balance between supply and demand in SC operating. The developed measure can not only consider the current state of the SC system but also take planned but not executed supply activities and upcoming demands into account. Therefore, using Balancing point, we can be aware of the unbalanced state of SC in advance.

  • PDF

Kinetic Analysis of the Salto Side-Ward Tucked on the Balance Beam (평균대 옆공중돌기 동작의 운동역학적 분석)

  • Yeo, Hong-Chal;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.61-69
    • /
    • 2008
  • The purpose of this study is to examine the success or failure on the balance beam in element group requirements posture which is bending salto side-ward tucked through kinetic analysis. The national team players were participated. The goal was to present training methods to coaches and athletes so as to provide scientifically useful information. The results from this study were summarized as below. When the performance was successful, the features of the body's center of gravity during the side somersault motion showed to spread from the center of the balance beam and the center of the gravity moved to the direction of the body's rotation. In the spring sections - event2 and 3, when the performance was successful, up/down fluctuation became more wider and increased air time. It supported the result that the projecting variable was higher than in failure trial. In addition, the right side hip joint angles and speed, and angular velocity as jumping up for a leap were larger than in failure trial. Those variables showed the optimal conditions for a leap. By increasing the speed of the upper limb from the shoulder and the speed of the shoulder joint angular velocity, the momentum was increased. Especially the right side shoulder joint angular velocity increased dramatically because the right leg was held. As to the side somersault motion, the angular momentum of successful trial with respect to x-axis was bigger than failed trial. It indicated that the increasing angular momentum with respect to x-axis was an important factor in flying motion. Besides, as to side somersault, the appropriate proportion of angular momentum with respect to y-axis and z-axis was a key to successful trails.