• 제목/요약/키워드: Moment resisting frame

검색결과 270건 처리시간 0.021초

Effect of Wave Load on the Member Force of Steel Structure of Floating Buildings

  • Lee, Young-Wook;Park, Tae-Jun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1431-1439
    • /
    • 2018
  • For floating buildings may fl oat on the water for a long time, they are constantly affected by various environmental loads such as wind and wave loads. In this study to find the wave effect on the floating building, five models are designed using steel moment resisting frame. It is assumed that the lower part of the floating building is a reinforced concrete pontoon, while the upper part is a three-story steel frame. To analyze floating buildings affected by wind and wave loads, hydro-dynamic and substructure analysis are performed. As input loads, this study set limits that the mean wind velocity is 35 m/s and the significant wave height is 0.5 m for the residential building. From the hydrodynamic analysis, the time-history acceleration of building is obtained and transformed into a base ground input for a substructure analysis of the superstructure of the building. Finally the mean of the maximum from 30 dynamic analysis of the floating buildings are used to be compared with the results of the same model on the ground. It was shown that the dynamic results with wind and wave loads are not always lesser than the static results which are calculated with static equivalent wind load for a building that is located on the ground.

가새골조의 연쇄붕괴 저항성능 (Progressive Collapse Resisting Capacity of Braced Frames)

  • 김진구;이영호;최현훈
    • 한국전산구조공학회논문집
    • /
    • 제21권5호
    • /
    • pp.429-437
    • /
    • 2008
  • 본 논문에서는 비선형 정적해석 및 동적해석을 이용하여 가새골조의 연쇄붕괴 저항능력을 평가하였다. 모두 아홉 개의 서로 다른 가새 형태를 고려하였으며, 모멘트골조의 해석 결과와 비교하였다 비탄성 정적해석 결과에 따르면 현행 기준에 따라 설계된 저층 가새골조는 1층 중앙에 위치한 기둥이 제거될 경우 연쇄붕괴 저항성능 기준을 만족하는 것으로 나타났으나 대부분 취성적인 파괴모드를 나타내었다. 특히 압축가새가 좌굴한 후 인장가새가 인장력을 발휘하기 전에 취약한 층의 기둥이 좌굴하는 것으로 나타냈다. Inverted-V형 가새골조의 경우가 가장 연성도 면에서 우수한 것으로 나타났다. 동적 해석 결과에 따르면 모든 가새골조는 중앙에 위치한 기둥이 제거될 경우 붕괴되지 않으며, 동일한 규모의 모멘트 저항골조에 비해 진동이나 처짐량이 작은 것으로 나타났다.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

지진피해 저감 시스템을 설치한 모멘트 프레임의 거동성능 평가 (Behavioral Performance Evaluation of the Moment-Resisting Frame Models Equipped with Seismic Damage Mitigation Systems)

  • 조양희;손홍민;허종완
    • 한국지진공학회논문집
    • /
    • 제21권6호
    • /
    • pp.311-322
    • /
    • 2017
  • In this study, the seismic performance of concrete-steel composite moment frame structures equipped with seismic retrofitting systems such as seismic reinforcement, base isolators, and bracing members, which are typical earthquake damage mitigation systems, is evaluated through nonlinear dynamic analyses. A total of five frame models were designed and each frame model was developed for numerical analyses. A total of 80 ground acceleration data were used to perform the nonlinear dynamic analysis to measure ground shear force and roof displacement, and to evaluate the behavioral performance of each frame model by measuring inter-story drift ratios. The analysis results indicate that the retrofitting device of the base isolator make a significant contribution to generating relatively larger absolute displacement than other devices due to flexibility provided to interface between ground and column base. However, the occurrence of the inter-story drift ratio, which is a relative displacement that can detect the damage of the structure, is relatively small compared with other models. On the other hand, the seismic reinforced frame model enhanced with the steel plate at the lower part of the column was found to be the least efficient.

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.

헌치로 보강된 철골모멘트골조의 지진응답 사례연구 (A Case Study on Seismic Response of Haunch Repaired Steel MRFs)

  • 이철호
    • 한국지진공학회논문집
    • /
    • 제1권2호
    • /
    • pp.69-78
    • /
    • 1997
  • 철골 모멘트 접합부의 보 하부를 헌치로 보강하여 내진성을 크게 향상 시킬 수 있음이 최근의 실물대 보-기둥 "부분골조" 실험을 토하여 확인된 바 있다. 그러나 헌치보강에서 기인할 수 있는 부작용 (side effecs) 또는 보강구조체의 "시스템 레벨"의 거동에 관해서는 현재 잘알려진 것이 없다. 본 연구에서는 헌치보강시 생성되는 이중패널존의 거동을 해석과정에 반영하여 보강구조체의 시스템 레벨의 거동변화를 고찰하였다. 이중패널존의 모델링은 최근에 필자가 제시한 기법을 사용하였으며 1994년 노스리지 지진 당시 접합부 손상을 입은 13층 철골모멘트골조를 대상으로 연구를 수행하였다. 정적/동적 비선형해석에 의해 얻어진 원구조물과 부강구조물의 전체적 응답(global responses)은 큰 차이를 보이지 않았으며 취약층(weak story)의 촉진과 같은 유해한 부작용도 수반되지 않았다.은 유해한 부작용도 수반되지 않았다.

  • PDF

Correlation between Analytic and Experimental Results on Inelastic Behavior of Reinforced Concrete Frame

  • Lee, Han-Seon;Kim, Sang-Dae;Park, Cheol-Yong;Ko, Dong-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.173-181
    • /
    • 2006
  • The objectives of this study are to evaluate the reliability of an existing nonlinear analysis program for predicting the inelastic behavior of reinforced concrete frame with seismic details and to observe the redistribution of the internal forces, which can not be easily measured by an experiment. In order to carry out this task, the nonlinear analysis program of IDARC 2D(3) was run on a 2-bay, 2-story moment-resisting reinforced concrete plane frame with seismic details. (1) The effort to obtain the results of the analysis similar to those of experiment was made by determining the appropriate values of model parameters. The comparison of the analysis results with those of experiment and the observation of the distribution of internal forces obtained through nonlinear analysis points to the following conclusions. (1) The overall relationship between lateral load and lateral displacement given by the analysis is similar to that of experiment. However, the values of initial stiffness and the amount of energy dissipation in the initial displacement steps given by the analysis show larger values than those of experiment. (2) The analysis provided detailed information on the distribution and redistribution of internal forces and proved useful in elucidating the crack pattern, the sequence of the occurrence of plastic hinges, and the failure or yielding mechanism for the whole structure. (3) In spite of the similarity in overall behavior of analysis and experiment, there exists a significant discrepancy in some local behaviors. Furthermore, the hysteresis in the relationship between moment and curvature in some column ends have shown sudden deteriorations in strength, which can not be interpreted satisfactorily at the present time. Therefore, it is necessary to develop a better analytical model to fill this knowledge gap.

재분배 기법 적용에 따른 모멘트 저항골조의 비선형 특성 평가 (Evaluation of inelastic performance of moment resisting steel frames designed by resizing algorithms)

  • 서지현;권봉근;박효선
    • 한국강구조학회 논문집
    • /
    • 제18권3호
    • /
    • pp.361-371
    • /
    • 2006
  • 최근 전통적인 구조 최적화 알고리즘의 단점을 극복하기 위해서 부재 변위기여도를 이용뼈 부재 사이즈를 조절함으로써 건물의 변위을 만족시키는 재분배기법이 실용적인 고층 건물 변위설계법으로 인식되고 있다. 재분배 기법을 이용한 변위 설계법은 변위에 효과적인 부재는 물량은 증가시키고, 변위제어에 효과적이지 못한 부재의 물량은 감소시키는 방법으로 변위를 제어한다. 기존 연구에서 재분배 기법은 동적 변위기여도에 근거하여 지진하중을 받는 철골 구조물의 변위를 효과적으로 제어할 수 있었다 기존의 연구에서 재분배 기법은 정하중과 지진하중을 받는 고층 건물의 변위를 효과적으로 제어할 수 있었으나, 재분배 기법으로 설계된 구조물의 비선형 성능에 대한 평가는 이루어 지지 못했다. 본 연구에서는 변위 제어 뿐 만 아니라 비선형 특성을 함께 개선할 수 있는 재분배 기법을 개발하기 위한 기초 연구로서, 재분배 기법의 비선형 특성 평가 모델을 개발하고, 이를 구조 시스템 중에서 가장 단순한 형태인 철골 모멘트 저항 골조 예제에 적용히여 철골 모멘트 저항 골조에 대한 재분배 기법의 비선형 특성을 평가하였다.

Development and testing of cored moment resisting stub column dampers

  • Hsiao, Po-Chien;Lin, Kun-Sian;Liao, Wei-Chieh;Zhu, Limeng;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.107-122
    • /
    • 2020
  • Moment resisting stub columns (MRSCs) have increasingly adopted in special moment-resisting frame (SMF) systems in steel building structures, especially in Asian countries. The MRSCs typically provide a lower deformation capacity compared to shear-panel stub columns, a limited post-yield stiffness, and severe strength degradation as adopting slender webs. A new MRSC design with cored configuration, consisting of a core-segment and two side-segments using different steel grades, has been proposed in the study to improve the demerits mentioned above. Several full-scale components of the cored MRSC were experimentally investigated focusing on the hysteretic performance of plastic hinges at the ends. The effects of the depths of the core-segment and the adopted reduced column section details on the hysteretic behavior of the components were examined. The measured hysteretic responses verified that the cored MRSC enabled to provide early yielding, great ductility and energy dissipation, enhanced post-yield stiffness and limited strength degradation due to local buckling of flanges. A parametric study upon the dimensions of the cored MRSC was then conducted using numerical discrete model validated by the measured responses. Finally, a set of model equations were established based on the results of the parametric analysis to accurately estimate strength backbone curves of the cored MRSCs under increasing-amplitude cyclic loadings.