• 제목/요약/키워드: Moment resisting frame

검색결과 270건 처리시간 0.031초

Effect of column loss location on structural response of a generic steel moment resisting frame

  • Rezvani, Farshad Hashemi;Jeffers, Ann E.;Asgarian, Behrouz;Ronagh, Hamid Reza
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.217-229
    • /
    • 2017
  • The effect of column loss location on the structural response of steel moment resisting frames (MRF) is investigated in this study. A series of nonlinear static and dynamic analyses were performed to determine the resistance of a generic frame to an arbitrary column loss and detect the structural members that are susceptible to failure progression beyond that point. Both force-controlled and deformation-controlled actions based on UFC 4-023-03 and ASCE/SEI 41-06 were implemented to define the acceptance criteria for nine APM cases defined in this study. Results revealed that the structural resistance against an arbitrary column loss in the top story is at least 80% smaller than that of the bottom story. In addition, it was found that the dynamic increase factor (DIF) at the failure point is at most 1.13.

A Modified Equivalent Frame Model for Flat Plate Slabs Under Combined Lateral and Gravity Loads (조합하중시의 플랫 플레이트 슬래브 시스템에 대한 수정된 등가골조 모델)

  • Oh, Seung-Yong;Park, Young-Mi;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.369-372
    • /
    • 2006
  • Flat plate slab systems have been commonly used as a gravity force resisting systems, which should be constructed with lateral force resisting systems such as shear walls and moment resisting frame. ACI 318(2005) allows the Direct design method, the equivalent frame method (ACI-EFM) under gravity loads and the finite-element models, effective beam width models and equivalent frame models under lateral loads. ACI-EFM can be used for gravity loads as well as lateral loads analysis. But the method may not predict the behavior of flat plate slabs under lateral loads. Thus Previous study developed a Modified equivalent frame method(Modified-EFM) which could give more precise answer for flat plate slab under lateral loads. This study is to verified the accuracy of a Modified-EFM under combined lateral and gravity loads. The accuracy of this model is verified by comparing the results using the Modified-EFM with the results of finite element analysis. For this purpose, 7 story building is considered. The analysis results of other existing models are included. The analysis results show that Modified-EFM produces comparable drift and slab internal moments with those obtained from finite element analysis.

  • PDF

Seismic Performance of a Knee-Braced Moment Resisting Frame (Knee brace가 설치된 모멘트저항골조의 내진성능)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제9권1호
    • /
    • pp.171-180
    • /
    • 2005
  • In this study the seismic performance of a three-story knee-braced moment-resisting frame (KBMRF), which is typically employed to support pipelines for oil or gas, was investigated. Nonlinear static pushover analyses were performed first to observe the force-displacement relationship of KBMRF under increasing seismic load. The results show that, when the maximum inter-story drift reached 1.5% of the story height, the main structural members, such as beams and columns, still remained elastic. Then nonlinear dynamic time-history analyses were carried out using eight earthquake ground motion time-histories scaled to at the design spectrum of UBC-97. It turned out that the maximum inter-story drift was smaller than the drift limit of 1.5 % of the structure height, and that the columns remained elastic. Based on these analytical results, it can be concluded that the seismic performance of the structure satisfies all the requirements regulated in the seismic code.

Seismic Performance of Rib Plate H Beam to Column Connections (리브로 보강된 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Yong;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제6권1호
    • /
    • pp.9-16
    • /
    • 2006
  • The moment resisting frame has been well-known as it had very excellent seismic performance, and it has been widely used and constructed in the design of a lot of buildings. However, the moment resisting frame system did not exert the seismic performance during the earthquake in Northridge and Kobe sufficiently, and it produced the crack or brittle fracture on the joint. this study was to ]m tests with the full-scale test subject as parameters of existence of H-beam web high tensile bolt shearing joint and reinforcement of H-flange rib. This researcher was to anticipate the decrease of number of high tensile bolts and the improvement of workability through the double shear joint by the experiment, and improve the seismic performance through the reinforcement of rib plate. In addition, this study was to prevent the brittle fracture by the stress concentration through the non scallop.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.

Collapse-Resisting Capacity of Steel Moment Frames Using the Linear Elastic Analysis (선형해석방법을 이용한 철골 모멘트골조의 붕괴저항성능)

  • Kim, Jin-Koo;Yang, Jeong-Ho;Kim, Tae-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제20권4호
    • /
    • pp.435-442
    • /
    • 2007
  • Since the Ronan Point apartment collapsed in 1968, researches on the progressive collapse have been intermittently conducted, and the collapse of the World Trade Center twin towers made the researches active again. In the United States guidelines such as GSA (2003) and DoD (2005) were provided for design and analysis of building structures against the progressive collapse. In this study the progressive collapse-resisting capacity of steel moment resisting frames designed by KBC-2005 was investigated using linear elastic static analysis and linear dynamic analysis procedures suggested in the guidelines. The results showed that in accordance with the GSA guideline the moment frame designed only for gravity load turned out to be vulnerable to the progressive collapse, whereas the lateral load resisting frame designed for earthquake load satisfied the criteria for progressive collapse. However both systems sailed to satisfy the criteria of the DoD-2005 guideline.

Experimental and numerical assessment of beam-column connection in steel moment-resisting frames with built-up double-I column

  • Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Ziarati, Seyed Mohsen;Mehrpour, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.315-328
    • /
    • 2018
  • Built-up Double-I (BD-I) columns consist of two hot rolled IPE sections and two cover plates which are welded by fillet welds. In Iran, this type of column is commonly used in braced frames with simple connections and sometimes in low-rise Moment Resisting Frames (MRF) with Welded Flange Plate (WFP) beam-column detailing. To evaluate the seismic performance of WFP connection of I-beam to BD-I column, traditional and modified exterior MRF connections were tested subjected to cyclic prescribed loading of AISC. Test results indicate that the traditional connection does not achieve the intended behavior while the modified connection can moderately meet the requirements of MRF connection. The numerical models of the connections were developed in ABAQUS finite element software and validated with the test results. For this purpose, moment-rotation curves and failure modes of the tested connections were compared with the simulation results. Moreover to avoid improper failure modes, some improvements of the connections were evaluated through a numerical study.

The practice of blind bolting connections to structural hollow sections: A review

  • Barnett, T.C.;Tizani, W.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.1-16
    • /
    • 2001
  • Due to aesthetic, economic, and structural performance, the use of structural hollow sections as columns in both continuous moment resisting and nominally pinned construction is attractive. Connecting the beams to these sections is somewhat problematic as there is no access to the interior of the section to allow for the tightening of a standard bolt. Therefore, bolts that may be tightened from one side, i.e., blind bolts, have been developed to facilitate the use of site bolting for this arrangement. This paper critically reviews available information concerning blind bolting technology, especially the performance of fasteners in shear, tension, and moment resisting connections. Also provided is an explanation of the way in which the results have been incorporated into design guidance covering the particular case of nominally pinned connections. For moment resisting connections, it is concluded that whilst the principle has been adequately demonstrated, sufficient data are currently not available to permit the provision of authoritative design guidance. In addition, inherent flexibilities in the connections mean that performance equivalent to full strength and rigid is unlikely to be achievable: a semicontinuous approach to frame design will therefore be necessary.

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

Seismic Performance Evaluation of Steel Moment Frames in Korea Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 국내 철골 모멘트골조의 내진성능 평가)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제16권4호
    • /
    • pp.1-8
    • /
    • 2012
  • Domestic steel moment resisting frames were designed in accordance with the former KBC2005 and the current KBC2009, and then their seismic performance was evaluated in accordance with FEMA355F by utilizing nonlinear dynamic analysis. The results from the procedure in FEMA355F were different with those from the capacity spectrum method utilizing nonlinear static push-over analysis. In particular, the domestic steel moment resisting frames have a weak panel zone, so their behavior can be estimated more precisely by nonlinear dynamic analysis. The domestic steel moment resisting frames satisfied the performance goal if located at a site class $S_B$ or $S_C$, regardless of the story number and the response modification factor. However, if they are located at a site class $S_D$ or $S_E$, performance goal satisfaction cannot be guaranteed. No matter what standard is used for the design, KBC2005 or KBC2009, the domestic steel moment resisting frames may possess satisfactory seismic performance if the site condition is relatively good.