• Title/Summary/Keyword: Moment magnitude

Search Result 239, Processing Time 0.025 seconds

Seismic Moment Conversion of instrumented Earthquakes in and around the Korean Peninsula (Ⅰ):from$m_b$or$m_s$to$m_0$ (한반도 및 인근 지역 계기지진의 지진모멘트 환산(Ⅰ):$m_b$또는 $m_s$에서$m_0$)

  • No, Myeong-Hyeon;Lee, Sang-Guk;Choe, Gang-Ryong
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • conversion equations to calculate seismic moment(M_0) from body-wave magnitude(m_b), surface-wave magnitude(M_s), or both were derived by using 50 earthquakes occurred within 32~44°N and 123~133°E whose M_0 were determined together with m_b or M_s. We divided those earthquakes into the deeper and the shallower ones based on the reference focal depth of 70 km. The unit of M_0 is dyne-cm. In case of M_s, the deeper earthquakes exhibit the higher seismic moment than the shallower ones. Standard deviations associated with conversion equations for deeper and shallower earthquakes are 0.25 and 0.16, respectively, in moment magnitude. , for deeper earthquakes , for shallower earthquakes. In case of m_b, the dependence of conversion equation on focal depth is not clearly observed. Associated standard deviation is 0.28 in moment magnitude. In case that both m_b and M_s were determined, a new magnitude, , were defined for shallower earthquakes to derive a more stable conversion equation. Associated standard deviation is 0.14 in moment magnitude. Conversion equations above can be used to unify the earthquake size into a single magnitude type, i.e., moment magnitude, in and around the Korea Peninsula.

  • PDF

The Relation Between Local Magnitude and Moment Magnitude in the Southern Part of the Korean Peninsula (한반도 남부 지역의 지역규모와 모멘트규모의 관계)

  • Choi, HoSeon;Noh, MyungHyun;Choi, KangRyong
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.185-192
    • /
    • 2004
  • We calculate moment magnitudes of earthquakes occurred in the southern part of the Korean Peninsula from January, 2001 to February, 2004 and compare them with local magnitudes published by KMA(Korea Meteorological Administration) and KIGAM(Korea Institute of Geoscience and Mineral Resources). From this study, we find that local magnitudes of KIGAM have higher correlation with moment magnitudes than local magnitudes of KMA have. We induce a proper conversion formula by analyzing relation between published local magnitudes and calculated moment magnitudes. The induced formula can be used to unify kinds of magnitudes in earthquake catalogues and unified earthquake catalogues can be applied as necessary factors for analyzing earthquake characteristics, seismic hazards or attenuation formulas in the southern part of the Korean Peninsula.

  • PDF

The time-dependent analysis of restraint moment in continous PSC bridge (PSC 2경간 연속화에 따른 구속모멘트의 시간의존해석)

  • Koo, Min-Se;Choi, In-Sik;Park, Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.417-424
    • /
    • 2001
  • It is very important to know the magnitude of the restraint moment which is appeared at the inner-support of the continuous PSC girder. The Age-adjusted Effective Modulus Method(AEMM) is used to get the magnitude of the restraint moment for the purpose of the time-dependent analysis of the concrete. The important factors for computing the restraint moment, the creep coefficient and the shrinkage strain are computed by comparing Korean specification with AC1209. The restrain moment is created by the individual continuity load. The main purpose of this paper is ensuring the safety of structure by acquiring the time-dependent stress acting on the concrete because the process of construction is getting difficult due to the advance of technology. The negative moment at the inner-support is decreased about 55% by introducing the process of making the continuous bridge relatively early.

  • PDF

Buckling behavior of stainless steel square hollow columns under eccentric loadings

  • Jang, Ho-Ju;Seo, Seong-Yeon;Yang, Young-Sung
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.563-577
    • /
    • 2006
  • This study involves a series of experiments on the buckling strength of eccentrically compressed cold-formed stainless steel square hollow-section columns. The principal parameters in this study are slenderness ratios ($L_k/r$ = 30, 50, 70) and magnitude of eccentricity e (0, 25, 50, 75, 100 mm) on the symmetrical end-moment. The objectives of this paper are to obtain the buckling loads by conducting a series of experiments and to compare the behavior of the eccentrically compressed cold-formed stainless steel square hollow-section columns with the results of the analysis. The ultimate buckling strength of the square-section members were determined with the use of a numerical method in accordance with the bending moment-axial force (M-P) interaction curves. The behavior of each specimen was displayed in the form of a moment-radian (M-${\theta}$) relationship. The numerically obtained ultimate-buckling interaction curves of the beam columns coincided with the results of the experiments.

Source parameters of earthquakes occurred in the Korean Peninsula (한반도 발생 지진의 지진원 상수)

  • 김성균;김병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.3-11
    • /
    • 2002
  • Source parameters for forty nine recent earthquakes occurred in and around Korean Peninsula are determined and the relations among them are studied. The corner frequency and seismic moment are estimated from three different methods. The spectral fitting of the source displacement spectrum with the $\omega$-square source model of Brune(1970) and Snoke(1987)'s method are applied to all events and empirical Green's function method for two events are adopted. The source parameters determined in this study show different values depending on the adopted method and on the stations of which seismograms are recorded. It is interpreted that the disagreements principally originate from insufficient consideration of source radiation pattern and attenuation and amplification according to path direction. The corner frequencies and seismic moments are averaged to exclude the directional effects and other source parameters are estimated from the mean corner frequency and seismic moment. The static stress drops estimated in this study tend to be independent of seismic moment or magnitude for events above a certain size. For earthquakes with the size less than about 3.0$\times$10$^{21}$dyne-cm(nearly same as M$_{L}$=3.7), the stress drop tends to decrease with the decreasing moment. This fact suggests a breakdown of scaling law of source parameters below the threshold magnitude. The moment magnitudes calculated from source parameters appear to be slightly larger than the Richter's local magnitudes in the range above M$_{L}$=3.5.3.5.

  • PDF

Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.71-83
    • /
    • 2020
  • Cantilever sheet pile walls are subjected to surcharge loading located on the backfill soil and at different distances from the top of the wall. The response of cantilever sheet pile walls to surcharge loadings at varying distances under seismic conditions is scarce in literature. In the present study, the influence of uniform surcharge load on cantilever sheet pile wall at varying distances from the top of the wall under seismic conditions are analyzed using finite difference based computer program. The results of the numerical analysis are presented in non-dimensional form like variation of bending moment and horizontal earth pressure along the depth of the sheet pile walls. The numerical analysis has been conducted at different magnitudes of horizontal seismic acceleration coefficient and vertical seismic acceleration coefficients by varying the magnitude and position of uniform surcharge from the top of the wall for different embedded depths and types of soil. The parametric study is conducted with different embedded depth of sheet pile walls, magnitude of surcharge on the top of the wall and at a distance from the top of the wall for different angles of internal friction. It is observed that the maximum bending moment increases and more mobilization of earth pressure takes place with increase in horizontal seismic acceleration coefficients, magnitude of uniform surcharge, embedded depth and decrease in the distance of surcharge from the top of the wall in loose sand.

Analysis of Harmonic Vibration of Cracked Rotor (균열회전체의 고조파진동 해석)

  • Jun, Oh-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.35-46
    • /
    • 2008
  • Harmonic vibration characteristics for the general rotor model having a breathing crack are analyzed. Analyses are performed at the half critical speed ranges. The vibration characteristics are explained by using the additional slope and bending moment at the crack position and the influence coefficient showing the structural dynamic characteristics of the rotor. With the low crack depth the magnitude of the additional slope is kept constant even at the speed range at which the orbit magnitude is very sensitive to the rotational speed change. At this speed range the vibration is affected by the influence coefficient only. As the dynamic bending moment exceeds the static bending moment with the increase of crack depth. the additional slope affects the vibration amplitude of cracked rotor and the crack propagation rate increases.

Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components (오래 달리기로 인한 피로가 지면반력 성분에 미치는 영향)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.225-233
    • /
    • 2013
  • The purpose of this study was to estimate the potential injury via analyzing ground reaction force components that were resulted from a prolonged-run-induced fatigue. For the present study, passive and active components of the vertical ground reaction force were determined from time and frequency domain. Shear components of GRF also were calculated from time and frequency domain. Twenty subjects with rear foot contact aged 20 to 30, no experience in injuries of the extremities, were requested to run on the instrumented tread-mill for 160 minutes at their preference running speed. GRF signals for 10 strides were collected at 5, 35, 65, 95, 125, and 155 minute during running. In conclusions, there were no significant difference in the magnitude of passive force, impact load rate, frequency of the passive and active components in vertical GRF between running times except the magnitude of active force (p<.05). The magnitude of active force was significantly decreased after 125 minute run. The magnitude of maximum peak and maximum frequency of the mediolateral GRF at heel strike and toe-off have not been changed with increasing running time. The time up to the maximum peak of the anteroposterior at heel-strike moment tend to decrease (p<.05), but the maximum peak and frequency of that at heel and toe-off moment didn't depend significantly on running time.

Nonparametric Estimation of Mean Residual Life by Partial Moment Approximation under Proportional Hazard Model

  • Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.965-971
    • /
    • 2004
  • In this paper we consider several nonparametric estimators for the mean residual life by using the partial moment approximation under the proportional hazard model. Also we compare the magnitude of mean square error of the proposed nonparametric estimators for mean residual life under the proportional hazard model.

  • PDF