• 제목/요약/키워드: Moment frame

검색결과 737건 처리시간 0.022초

가새와 강골조를 이용한 저층 RC 구조물의 내진보강 (Seismic Retrofit of Reinforced Concrete Structures Using Steel Braces and Moment Frames)

  • 훠 찌안 촘;박경훈;김진구
    • 한국전산구조공학회논문집
    • /
    • 제23권5호
    • /
    • pp.509-516
    • /
    • 2010
  • 본 연구에서는 가새와 강골조를 이용하여 철근콘크리트 모멘트 골조의 내진성능을 보강하는 방법에 대하여 연구하였다. 해석모델은 중력하중에 대해서만 설계된 3층 3경간의 RC 모멘트 골조 건물이다. 먼저 유한요소해석을 이용하여 RC구조물과 가새 접합부의 응력/변형 분포 상태를 파악하고, 접합부의 응력 집중현상을 방지하기 위하여 철골 모멘트골조를 추가하여 보강설계를 수행하였다. 내진보강을 위한 가새는 일반 철골 가새와 비좌굴 가새의 두가지 종류의 가새를 적용하고, 보강 전후 구조물의 강도 및 연성도를 비선형 정적 및 동적해석을 통해 비교하였다. 해석결과에 따르면 추가되는 철골 모멘트골조와 가새를 동시에 사용할 경우 구조물의 강도 및 연성능력의 증가에 큰 효과가 있는 것으로 나타났다. 추가되는 철골 모멘트골조는 단면이 크지 않을 경우 강도의 증가에 큰 영향을 미치지 않는 것으로 나타났다.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

The beneficial effects of beam web opening in seismic behavior of steel moment frames

  • Erfani, Saeed;Naseri, Ata Babazadeh;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • 제13권1호
    • /
    • pp.35-46
    • /
    • 2012
  • Implementation of openings in beams web has been introduced as an innovative method for improving seismic performance of steel moment frames. In this paper, several steel moment frames have been studied in order to evaluate the effect of openings in beams web. The beam sections with web opening have been modeled as a simplified super-element to be used in designing frames and to determine opening configurations. Finite element models of designed frames were generated and nonlinear static pushover analysis was conducted. The efficient location for openings along the beam length was discovered and the effects of beams with web openings on local and global behavioral characteristics of frames were discussed. Base on the results, seismic performance of steel moment frames was improved by creating openings in beams web, in terms of reduction in stress level of frame sensitive areas such as beam to column connections and panel zones.

FEMA P695를 이용한 국내 저층 철골 중간모멘트골조의 반응수정계수 제안 (Proposition of Response Modification Factor of Low-rise Steel Intermediate Moment Frame in Korea using FEMA P695)

  • 한아름;김태완;유은종
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2014
  • In current seismic design code, steel moment frames are classified into ordinary, intermediate, and special moment frames. In the case of special moment frames which have large R-factor, economic design is possible by reducing the design lateral force. However, there is difficulty for practical application due to constraints such as strong column-weak beam requirement. This study evaluated if steel intermediate moment frame could maintain enough seismic capacity when the R-factor is increased from 4.5 to 6. As for the analytical models, steel moment frames of 3 and 5 stories were categorized into four performance groups according to seismic design category. Seismic performances of the frames were evaluated through the procedure based on FEMA P695. FEMA P695 utilizes nonlinear static analysis(pushover analysis) and nonlinear dynamic analysis(incremental dynamic analysis, IDA). In order to reflect the characteristics of Korean steel moment frames on the analytical model, the beam-column connection was modeled as weak panel zone where the collapse of panel zone was indirectly considered by checking its ultimate rotational angle after an analysis is done. The analysis result showed that the performance criteria required by FEMA P695 was satisfied when R-factor increased in all the soil conditions except $S_E$.

Analysis of demountable steel and composite frames with semi-rigid bolted joints

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.363-380
    • /
    • 2018
  • This paper presented an integral design procedure for demountable bolted composite frames with semi-rigid joints. Moment-rotation relationships of beam-to-column joints were predicted with analytical models aiming to provide accurate and reliable analytical solutions. Among this, initial stiffness of beam-to-column joints was derived on the basis of Timoshenko's plate theory, and moment capacity was derived in accordance with Eurocodes. The predictions were validated with relevant test results prior to further applications. Frame analysis was conducted by using Abaqus software with material and geometrical nonlinearity considered. Variable lateral loads incorporating wind actions and earthquake actions in accordance with Australian Standards were adopted to evaluate the flexural behaviour of the composite frames. Strength and serviceability limit state criteria were utilized to verify configurations of designed models. A wide range of frames with the varied number of storeys and bays were thereafter programmed to ascertain bending moment envelopes under various load combinations. The analytical results suggest that the proposed approach is capable of predicting the moment-rotation performance of the semi-rigid joints reasonably well. Outcomes of the frame analysis indicate that the load combination with dead loads and live loads only leads to maximum sagging and hogging moment magnitudes in beams. As for lateral loads, wind actions are more crucial to dominate the design of the demountable composite frames than earthquake actions. No hogging moment reversal is expected in the composite beams given that the frames are designed properly. The proposed analysis procedure is demonstrated to be a simple and efficient method, which can be applied into engineering practice.

Probabilistic computation of the structural performance of moment resisting steel frames

  • Ceribasi, Seyit
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.369-382
    • /
    • 2017
  • This study investigates the reliability of the performance levels of moment resisting steel frames subjected to lateral loads such as wind and earthquake. The reliability assessment has been performed with respect to three performance levels: serviceability, damageability, and ultimate limit states. A four-story moment resisting frame is used as a typical example. In the reliability assessment the uncertainties in the loadings and in the capacity of the frame have been considered. The wind and earthquake loads are assumed to have lognormal distribution, and the frame resistance is assumed to have a normal distribution. In order to obtain an appropriate limit state function a linear relation between the loading and the deflection is formed. For the reliability analysis an algorithm has been developed for determination of limit state functions and iterations of the first order reliability method (FORM) procedure. By the method presented herein the multivariable analysis of a complicated reliability problem is reduced to an S-R problem. The procedure for iterations has been tested by a known problem for the purpose of avoiding convergence problems. The reliability indices for many cases have been obtained and also the effects of the coefficient of variation of load and resistance have been investigated.

앙골라 주경기장 구조설계 (Structural Design of Angola Stadium)

  • 김종수;신창훈;김정현
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.212-217
    • /
    • 2008
  • 본 논문은 앙골라 주경기장에 대한 구조설계에 대해 설명하고 있다. 앙골라 주경기장은 연면적 78,000$m^2$, 지상 4층 구조물로서 스탠드 부분은 Steel moment frame으로 구성되고, 지붕부분은 캔틸래버 트러스 시스템으로 설계되었다. 기초는 파일기초가 사용되었으며, 내진과 내풍설계, 스탠드 부분에 대한 다이아프램 액션, 스탠드와 지붕사이의 Interaction, 바닥진동 등 사용성 평가가 설계사항에 고려된 프로젝트이다.

  • PDF

재분배 기법의 비선형 특성 개선을 위한 기초 연구 (Basic Research to Improve the Inelastic Performance of Resizing Algorithms)

  • 권도형;서지현;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.535-540
    • /
    • 2006
  • Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational when applied to aseismatic design in the range of elastic until now. However, by the preceding research we confirmed that the inelastic performance of steel moment-resisting frame designed by resizing algorithms is not better than that of the frame before resizing. We present therefore a plan for improving inelastic performance of steel moment-resizing frame to which resizing algorithms applied in this paper.

  • PDF

1/12 축소 철근콘크리트 상부벽식-하부골조 건축물의 진동대 실험 (Shaking Table Tests of 1/12-Sale R.C. Bearing-Wall system with Bottom Piloti Frames)

  • 이한선;고동우;권기현;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.407-414
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1 :12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have two different layouts of the plan The one is a moment-resisting frame system and the other is a moment-resisting frame system with a infilled shear wall. Then, this model was subjected to a series of earthquake excitations. The test results show that the existence of shear wall reduced the shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle.

  • PDF

P-$\Delta$ 효과를 고려한 철골 구조물의 비선형 동적거동 평가 (Evaluation of Nonlinear Dynamic Behavior for Steel Moment Frame Structures Considering P-$\Delta$ Effects)

  • 최원호;이주완;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.235-242
    • /
    • 2001
  • Inelastic seismic response of steel moment frame structures, which are usually quite gravity load and subject to large displacement under severe earthquake, may be severly influenced by the structure P-Δ effects. The P-Δ effect may have an important impact on the dynamic behavior of the structure in the nonlinear seismic analysis. In multi degree of freedom systems P-Δ effects may significantly affect only a subset of stories or a single story alone. Therefore, a story drift amplification of structure is happened by P-Δeffects and such nonlinear dynamic behaviors are very difficult to evaluate in the structures. In this study, two systems having different design methods of steel moment frame structures are investigated to evaluate the P-Δ effects due to gravity load. The plastic hinge formations, maximum rotational ductility demands, and energy distribution will be compared and evaluated following whether the P-Δ effects are considered or not. And design methods are proposed for the prevention of the instability of structures which due to the P-Δ effects.

  • PDF