• 제목/요약/키워드: Molten Carbonate Fuel Cell Plant

검색결과 29건 처리시간 0.02초

용융탄산염연료전지 및 주변기기의 동적시뮬레이션 (Dynamic Simulation of Molten Carbonate Fuel Cell and Mechanical Balance of Plant)

  • 성태홍;김경천
    • 대한기계학회논문집B
    • /
    • 제38권2호
    • /
    • pp.121-128
    • /
    • 2014
  • 본 연구의 목적은 용융탄산염연료전지와 같은 고온연료전지에 동반하는 기계적 주변기기의 타당성을 검토할 수 있는 동적 시뮬레이션 모델을 개발하는 것이다. 연료전지를 운송수단과 같은 독립적인 동력기관에서 사용하기 위해서는 동반하는 기계적 주변기기를 최적화 및 소형화할 필요가 있다. 본 연구에서는 유입가스의 조성, 압력, 유량 및 스택의 온도에 따른 용융탄산염연료전지 내부의 화학반응의 동적 모델링을 구현하고 정상상태 시뮬레이션을 수행하여 실험결과와 비교 분석하였다. 또 연료전지의 전류밀도 제어에 따른 on/off 시뮬레이션을 수행하여 동적 시뮬레이션 모델의 타당성을 분석하였다.

고온 연료전지 발전단지의 내부계통 고장에 의한 운전환경에 대한 분석 (A Study on the Operation Condition by Electrical Fault in the High Temperature Fuel Cell Plant)

  • 정영환;채희석;김재철;조성민
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.51-59
    • /
    • 2013
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack, increases in the power output of high temperature fuel cell typically must be made at a slow rate. So, the short time interruption of high temperature fuel cell causes considerable generated energy losses. Because of the characteristic of high temperature fuel cell, we analyzed the impact of electrical fault in the fuel cell plant on other fuel cell generators in the same plant site. A various grounding configuration and voltage sag are analyzed. Finally, we presented the solution to minimize the effect of fault on other fuel cell generators.

연료전지 발전을 위한 바이오가스정제 (Biogas Purifying for Fuel cell Power Plant)

  • 이종규;전재호
    • 상하수도학회지
    • /
    • 제21권4호
    • /
    • pp.439-444
    • /
    • 2007
  • Using the anaerobic digester gas as a fuel, fuel cells have the potential to provide significant environmental and economic benefits. A molten carbonate fuel cell power plant was installed in the municipal sewage works of Tancheon in Seoul. The fuel cell unit operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Korea. This article outlines the experiences of gas purification process with planning, installation and operation. The engineering and installation phase is described regarding to the special features of digester gas, for example impurities in gas composition. Such impurities would be harmful to fuel cells. Operational results from the field test with a gas purification process plant are presented in this paper.

연료전지 연료가스인 하수처리장 소화가스정제 (Anaerobic Digester Gas Purification for the Fuel Gas of the Fuel Cell)

  • 이종규;전재호;박규호;최두성;박재영
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.164-170
    • /
    • 2007
  • The Tancheon wastewater treatment plant(WWTP) in Seoul using anaerobic digestion to reduce the outlet sludge produces anaerobic digester gas which contains 65% $CH_4$ and 35% $CO_2$. The gas purification equipment was installed and operated to use Anaerobic Digester Gas(ADG) as a fuel for molten carbonate fuel cell(MCFC). The processes consist of the desulfurizer and the adsorption tower to remove $H_2S$ and siloxane in the gas. The gas purification equipment removed virtually over 95% of $H_2S$ and over 99% of siloxane. Results has demonstrated that the fuel cell can produce electrical output and hot water with negligible air emissions of CO, NOx and $SO_2$. The site provides the first opportunity in Korea for demonstrating Molten carbonate fuel cell(MCFC) which the digester gas was applied to the fuel gas.

내부고장을 고려한 고온형 연료전지 대규모 발전단지의 병렬운전 변압기 적정 뱅크수에 관한 연구 (A Study on the Proper Number of Banks of Parallel Operation of Transformer in Large-scale Power Plants Using the High Temperature Fuel Cell Considering the Internal Failure)

  • 정영환;채희석;성인제;김재철
    • 조명전기설비학회논문지
    • /
    • 제28권3호
    • /
    • pp.26-31
    • /
    • 2014
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we should divide the power plant configuration to several banks. However, the improvement of reliability in fuel cell power plant system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we evaluate the cost for operation and installation, the benefit for electric energy and thermal energy sales, and the system reliability for several cases : these cases relate with the bank configuration.

용융탄산염 연료전지의 기술개발 현황 및 분석 (Development Status of the Molten Carbonate Fuel Cell Technology)

  • 홍성안;남석우
    • 공업화학
    • /
    • 제3권4호
    • /
    • pp.535-546
    • /
    • 1992
  • The molten carbonate fuel cell(MCFC) has been under Intensive development for the last decade as a second generation fuel cell. The advantages of the MCFC over the phophoric acid fuel cell are higher efficiency, its ability to accept CO and $H_2$ as a fuel, lower material costs, and high operating temperature making internal reforming possible. These features, along with low atmospheric emissions, will open up a significant market as an attractive means of developing highly efficient power plant. This article reviews a status of the MCFC research and development, a principle of the MCFC, and cell and stack technology including the status of electrodes, matrices and electrolytes. Several technical difficulties which must be resolved to be commercialized art mainly focused.

  • PDF

Economic Feasibility Study for Molten Carbonate Fuel Cells Fed with Biogas

  • Song, Shin-Ae;Han, Jong-Hee;Yoon, Sung-Pil;Nam, Suk-Woo;Oh, In-Hwan;Choi, Dae-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.102-111
    • /
    • 2010
  • Molten carbonate fuel cell (MCFC) power plants are one of most attractive electricity generation systems for the use of biogas to generate high-efficiency ultra-clean power. However, MCFCs are considerably more expensive than comparable conventional electricity generation systems. The commercialization of MCFCs has been delayed more than expected. After being effective in the Kyoto protocol and considerably increasing the fossil price, the attention focused on $CO_2$ regression and renewable energy sources has increased dramatically. In particular, the commercialization and application of MCFC systems fed with biogas have been revived because of the characteristics of $CO_2$ collection and fuel variety of MCFCs. Better economic results of MCFC systems fed with biogas are expected because biogas is a relatively inexpensive fuel compared to liquefied natural gas (LNG). However, the pretreatment cost is added when using anaerobic digester gas (ADG), one of the biogases, as a fuel of MCFC systems because it contains high $H_2S$ and other contaminants, which are harmful sources to the MCFC stack in ADG. Thus, an accurate economic analysis and comparison between MCFCs fed with biogas and LNG are very necessary before the installation of an MCFC system fed with biogas in a plant. In this paper, the economic analysis of an MCFC fed with ADG was carried out for various conditions of electricity and fuel price and compared with the case of an MCFC fed with LNG.

25 kW급 용융 탄산염 연료 전지 스택의 상압 및 가압 운전 (Atmospheric and Pressurized Operation of a 25 kW MCFC Stack)

  • 고준호;서혜경;임희천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.264-269
    • /
    • 2000
  • As a part of the ongoing effort towards commercial application of high-temperature fuel cell power generation systems, we have recently built a pilot-scale molten carbonate fuel cell power plant and tested it. The stack test system is composed of diverse peripheral units such as reformer, pre-heater, water purifier, electrical loader, gas supplier, and recycling systems. The stack itself was made of 40cells of $6000cm^2$ area each. The stack showed an output higher than 25kW power and a reliable performance at atmospheric operation. A pressurized performance was also tested, and it turned out the cell performance increased though a few cells have shown a symptom of gas crossover. The pressurized operation characteristics could be analyzed with numerical computation results of a stack model.

  • PDF

125kW 용융탄산염 연료전지 시스템 개발 (The Development of 125kW Molten Carbonate Fuel cell System)

  • 김범주
    • 기술사
    • /
    • 제44권1호
    • /
    • pp.48-52
    • /
    • 2011
  • The KEPCO Research Institute has developed Molten Carbonate Fuel Cell(MCFC) since 1993. Recently, an 125-kW MCFC system was operated at Boryeong thermal power plant, Korea from December, 2009 to March, 2010, This system is composed of an 125-kW stack, mechanical balance of plant (MBOP), and Power Conditioning System. The stack has 200 unit cells of which effective area is 10,000 cm2. Especially, MBOP is mainly made up of ejector and catalytic combustor which help this system to be supplied with cathode inlet gas using anode tail gas and fresh air. After the pretreatment of this system was performed for about 20 days, initial load operation was performed at January. 2010. Moreover, this system had been operated for 3,270 hours.

  • PDF

125 kW급 용융탄산염 연료전지 시스템의 이젝터 설계 및 시험 (The Ejector Design and Test for 125 kW Class Molten Carbonate Fuel Cell System)

  • 김범주;박수만;송오섭
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.139-147
    • /
    • 2018
  • Korea Electric Power Research Institute (KEPCO RI) had developed molten carbonate fuel cell (MCFC) system since 1993. Finally, KEPCO RI developed and operated a 125 kW MCFC system in 2010. To make MCFC system compact, it is indispensable to install an ejector in this system where the anode off gas, the cathode off gas, and fresh air are mixed before flowing to the catalytic burner. KEPCO RI had developed various ejectors for MCFC system since 2006. The 125 kW MCFC system built with the developed ejector was operated successfully in Boryeong Thermal Power Plant in 2010. This 125 kW MCFC ejector was designed on the basis of the experimental results of 5 kW and 75 kW MCFC ejectors. The main goal of ejector design in our MCFC system is to maintain the entrainment ratio and the pressure between fuel cell stack and catalytic burner within the operating range. In this paper, the design results of the ejector are presented based on the 125 kW MCFC system operating conditions. In addition, a designed ejector was manufactured and installed in the MCFC system. As the fuel cell is under load operation, the pressure surrounding the ejector was measured to ensure that the fuel cell system is operating smoothly.