DOI QR코드

DOI QR Code

Dynamic Simulation of Molten Carbonate Fuel Cell and Mechanical Balance of Plant

용융탄산염연료전지 및 주변기기의 동적시뮬레이션

  • Received : 2013.05.28
  • Accepted : 2013.11.20
  • Published : 2014.02.01

Abstract

This study aims to develop a simulation bed for the mechanical balance of plants of high temperature fuel cells such as molten carbonate fuel cells. For using fuel cells in transportation, the optimization of the balance of plants should be considered. In this study, the dynamic model of a molten carbonate fuel cell and the model's responses to inlet gas composition, pressure, flow rate, and stack temperature were analyzed. On/off simulation was performed for testing the dynamic model's feasibility. The simulation results are in reasonable agreement with the experimental results from published literatures.

본 연구의 목적은 용융탄산염연료전지와 같은 고온연료전지에 동반하는 기계적 주변기기의 타당성을 검토할 수 있는 동적 시뮬레이션 모델을 개발하는 것이다. 연료전지를 운송수단과 같은 독립적인 동력기관에서 사용하기 위해서는 동반하는 기계적 주변기기를 최적화 및 소형화할 필요가 있다. 본 연구에서는 유입가스의 조성, 압력, 유량 및 스택의 온도에 따른 용융탄산염연료전지 내부의 화학반응의 동적 모델링을 구현하고 정상상태 시뮬레이션을 수행하여 실험결과와 비교 분석하였다. 또 연료전지의 전류밀도 제어에 따른 on/off 시뮬레이션을 수행하여 동적 시뮬레이션 모델의 타당성을 분석하였다.

Keywords

References

  1. Bensaid, S., Specchia, S., Federici, F., Saracco, G. and Specchia, V., 2009, "MCFC-Based Marine APU: Comparison Between Conventional ATR and Cracking Coupled with SR Integrated Inside the Stack Pressurized Vessel," Int. J. Hydrogen Energ., Vol. 34, No. 4, pp. 2026-2042. https://doi.org/10.1016/j.ijhydene.2008.11.092
  2. Rajashekara, K., Grieve, J. and Daggett, D., 2008, "Hybrid Fuel Cell Power in Aircraft," IEEE Ind. Appl. Mag., Vol. 14, No. 4, pp. 54-60.
  3. Martinez, A. S., Brouwer, J. and Samuelsen, G. S., 2012, "Feasibility Study for SOFC-GT Hybrid Locomotive Power Part II. System Packaging and Operating Route Simulation," J. power sources, Vol. 213, No. 1, pp. 358-374. https://doi.org/10.1016/j.jpowsour.2012.04.023
  4. Lukas, M. D., Lee., K. Y. and Ghezel-Ayagh, H., 2002, "Modeling and Cycling Control of Carbonate Fuel Cell Power Plants," Control. Eng. Pract., pp. 197-206.
  5. Lukas, M. D., Lee., K. Y. and Ghezel-Ayagh, H., 2001, "An explicit dynamic model for direct reforming carbonate fuel cell stack," IEEE T. Energy Convert., Vol. 16, No. 3, pp. 289-295. https://doi.org/10.1109/60.937210
  6. Lukas, M. D., Lee., K. Y. and Ghezel-Ayagh, H., 1999, "Development of a Stack Simulation Model for Control Study on Direct Reforming Molten Carbonate Fuel Cell Power Plant," IEEE T. Energy Convert., Vol. 14, No. 4, pp. 1651-1657. https://doi.org/10.1109/60.815119
  7. Brouwer, J., Jabbari, F., Leal, E. M. and Orr, T., 2006, "Analysis of a Molten Carbonate Fuel Cell: Numerical Modeling and Experimental Validation," J. Power Sources, Vol. 158, No. 1, pp. 213-224. https://doi.org/10.1016/j.jpowsour.2005.07.093
  8. Larminie, J. and Dicks, A. 2000, Fuel Cell Systems Explained, John Willey & Sons, Ltd.
  9. Wolf, T. L. and Wilemski, G., 1983, "Molten Carbonate Fuel Cell Performance Model," J. Electrochem. Soc., Vol. 130, No. 1, pp. 48-55. https://doi.org/10.1149/1.2119681
  10. Jeong, Y. H. and Kim, T. S., 2003, "Performance Design Analysis of Hybrid Systems Combining Atmospheric Pressure Molten Carbonate Fuel Cell and Gas Turbine," Trans. Korean Soc. Mech. Eng. B, Vol. 27, No. 10, pp. 1361-1369 https://doi.org/10.3795/KSME-B.2003.27.10.1361
  11. Yuh. C. Y. and Selman, J. R., 1991, "The Polarization of Molten Carbonate Fuel Cell Electrodes : I. Analysis of Steady-State Polarization Data," J. Electrochem. Soc., Vol. 138, pp. 3642-3648. https://doi.org/10.1149/1.2085473
  12. Sung, T. and Kim, K. C., 2013, "Design of Dynamic MCFC Simulation Bed for MBOP Feability Test of Marine Applications," Appl. Mech. and Mater., Vol. 291-294, pp. 589-592. https://doi.org/10.4028/www.scientific.net/AMM.291-294.589
  13. Fuel Cell Engineeing Corporation, 1997, "Santa Clara 2-MW Fuel Cell Demonstration Power Plant Test Report," prepared for EPRI, TR-108252, USA.