• 제목/요약/키워드: Molecular vibration

검색결과 73건 처리시간 0.02초

단백질의 동적특성해석을 위한 전산해석기법 연구 (Computational Methodology for Biodynamics of Proteins)

  • 안정희;장효선;엄길호;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.476-479
    • /
    • 2008
  • Understanding the dynamics of proteins is essential to gain insight into biological functions of proteins. The protein dynamics is delineated by conformational fluctuation (i.e. thermal vibration), and thus, thermal vibration of proteins has to be understood. In this paper, a simple mechanical model was considered for understanding protein's dynamics. Specifically, a mechanical vibration model was developed for understanding the large protein dynamics related to biological functions. The mechanical model for large proteins was constructed based on simple elastic model (i.e. Tirion's elastic model) and model reduction methods (dynamic model condensation). The large protein structure was described by minimal degrees of freedom on the basis of model reduction method that allows one to transform the refined structure into the coarse-grained structure. In this model, it is shown that a simple reduced model is able to reproduce the thermal fluctuation behavior of proteins qualitatively comparable to original molecular model. Moreover, the protein's dynamic behavior such as collective dynamics is well depicted by a simple reduced mechanical model. This sheds light on that the model reduction may provide the information about large protein dynamics, and consequently, the biological functions of large proteins.

  • PDF

The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams

  • Lim, C.W.;Li, C.;Yu, J.L.
    • Interaction and multiscale mechanics
    • /
    • 제2권3호
    • /
    • pp.223-233
    • /
    • 2009
  • This paper presents a new nonlocal stress variational principle approach for the transverse free vibration of an Euler-Bernoulli cantilever nanobeam with an initial axial tension at its free end. The effects of a nanoscale at molecular level unavailable in classical mechanics are investigated and discussed. A sixth-order partial differential governing equation for transverse free vibration is derived via variational principle with nonlocal elastic stress field theory. Analytical solutions for natural frequencies and transverse vibration modes are determined by applying a numerical analysis. Examples conclude that nonlocal stress effect tends to significantly increase stiffness and natural frequencies of a nanobeam. The relationship between natural frequency and nanoscale is also presented and its significance on stiffness enhancement with respect to the classical elasticity theory is discussed in detail. The effect of an initial axial tension, which also tends to enhance the nanobeam stiffness, is also concluded. The model and approach show potential extension to studies in carbon nanotube and the new result is useful for future comparison.

$CO_2$ Laser Absorption Measurement of $CH_3CH_2Br$ using Photoacoustic Method

  • Jang Soo Shin;Kyung Hoon Jung;Cheol Jung Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.553-556
    • /
    • 1992
  • The ${CO}_2$ laser absorption measurement of ${CH}_3{CH}_2Br$ utilizing photoacoustic (PA) technique was performed using a cw and a pulsed ${CO}_2$ lasers. The absorption profile in the ${CO}_2$ laser wavelength region (9-10 ${\mu}$m) and the macroscopic small signal absorption cross section at 10P(20) (10.59 ${\mu}$m, 944 $cm^{-1}$) laser line were measured using a cw ${CO}_2$ laser. The laser fluence dependence on infrared multiphoton absorption (IRMPA) was also studied with a pulsed TEA ${CO}_2$ laser at 10P(20) laser line. In view of monotonic increase of PA signal with the rise of laser fluence, it was suggested that the anharmonicity in pumped vibration mode did not restrict ir multiphoton absorption in ${CH}_3{CH}_2Br$ system as found in large molecular system.

A Study on the Effect of Petroleum Resin on Vibration Damping Characteristics of Natural Rubber Composites

  • Yun, Yu Mi;Lee, Jin Hyok;Choi, Myoung Chan;Kim, Jung Wan;Kang, Hyun Min;Bae, Jong Woo
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.201-208
    • /
    • 2021
  • In this study, the effect of petroleum resin on the mechanical strength, morphology, and vibration damping characteristics of natural rubber (NR) composites was observed. The NR composites plasticized by adding petroleum resin showed decreased hardness and mechanical properties. A morphology analysis indicated that as the amount of petroleum resin increased, carbon black aggregates (or agglomerates) observed at the fracture surface decreased, resulting in an improvement in the dispersibility. In addition, as 20 phr of petroleum resin was added, the effective damping temperature range increased by approximately 11.4%, the hysteresis loss rate increased by 15.2%, and the resilience decreased by 36.6%. Therefore, it was confirmed that the vibration damping characteristics improved with the addition of petroleum resin. This was because the rubber-filler interaction between the NR molecular chain of the NR composite and the carbon black particles improved by the addition of petroleum resin.

마이크로기계 공진 센서의 유체-구조물 상호 작용 해석 (Fluid-structure interaction analysis of micromechanical resonance sensor)

  • 강인구;신윤혁;임홍재;임시형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.309-313
    • /
    • 2009
  • A micromechanical resonance sensor detects the resonance frequency shift due to mass or adsorption induced surface stress change during molecular adsorption or interaction on its surface. The resonance sensor is surrounded by gas or liquid solution during operation. To study the resonance shift phenomena depending on its surrounding environment, fluid-structure interaction of the resonance sensor has been analyzed for the different fluid environment and boundary conditions using finite element analysis.

  • PDF

Reduced Density Matrix Theory for Vibrational Absorption Line Shape in Energy Transfer Systems: Non-Condon Effects in Water

  • Yang, Mi-No
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.439-443
    • /
    • 2011
  • Using the projection operator technique, a reduced density matrix theory for linear absorption spectrum of energy transfer systems is developed for the theoretical absorption line shape of the systems with non-Condon transitions. As an application, we considered a model system of OH vibrations of water. In the present model calculation, the OH vibration modes are coupled to each other via intra-molecular coupling mechanism while their intermolecular couplings are turned off. The time-correlation functions appearing in the formulation are calculated from a mixed quantum/classical mechanics method. The present theory is successful in reproducing the exact absorption line shape. Also the present theory was improved from an existing approximate theory, time-averaged approximation approach.

탄소나노튜브 엑츄에이터의 설계에서의 유한요소모델링 기법 (Finite Element Modeling of a Carbon Nanotube Actuator)

  • 김정택;현석정;김철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.559-562
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

분자진동방법을 사용한 2, 2'-Bipyridyl Crown Ether 의 다른자리 입체성 효과에 관한 연구 (Molecular Vibrational Study of the Allosteric Effect in 2,2'-Bipyridyl Crown Ether)

  • 김완규;정순량
    • 대한화학회지
    • /
    • 제29권3호
    • /
    • pp.205-212
    • /
    • 1985
  • 2,2'-bipyridyl crown ether에 관한 allosteric 효과를 분자진동연구방법을 사용하여 연구하였는데, 방법으로는 mass-weighted-cartesian 좌표방법을 사용하였다. Crown ether의 pore opening 운동에 관여하는 모드로는 235, 234, 188 그리고 178cm$^{-1}$에 해당되는 파수가 얻어졌고, biphenyl축을 통한 회전운동이 crown ether에 영향을 미치는 rotational vibration 운동은 168, 104 그리고 67cm$^{-1}$에서 파수가 얻어졌다. 특히 178cm$^{-1}$의 모드는 allosteric효과를 가장 많이 포함한 것으로 생각되어 진다.

  • PDF

고려인삼( Panax ginseng C A. Meyer)의 비전분성 다당류에 관한 연구 II. Pectin질의 이화학적 성질 (Studies on the Nonstarchy Polysaccharides of Korean Ginseng, Panax ginseng, C. A. Meyer II. Physicochemical propertie of pectic substances)

  • 민경찬;조재선;김은수
    • Journal of Ginseng Research
    • /
    • 제8권2호
    • /
    • pp.105-113
    • /
    • 1984
  • This study was conducted to investigate chemical and physical characteristics of pectin in Korean ginseng plant. The results obtained are as follows: 1, The molecular weight of the pectin in ginseng plant was in the range of 1.1-2.4x 104 and athydrouronic acid content in the pectin was 97.98%. 2. The intrinsic viscosity of pectin as well as apparent visosity of the pectin in the roots were increased with cultural period. 3. The IR spectra of ginseng pectin showed the OH stretch, C-H bending vibration and the vibration of ester group carboxyl. 4. Sugars present in galacturonic acid, glucose, arbinose, xylose, galactose and rhamnose.

  • PDF

Electrostatic Interaction Between Oligopeptides and Phosphate Residues by Determination of Absolute Raman Intensities

  • Kye-Taek Lim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.286-289
    • /
    • 1991
  • The changed isotropic absolute Raman intensities of the phosphate residue in the complexes of positive charge oligopeptides, lys-lys, arg-arg, lys-aromat-lys, negative charge diethyl phosphoric acid (DEP) and polyriboadenylic acid{poly(rA)} were reported and discussed. Our measurements showed that the absolute intensities of phosphate stretch vibration in complexes were different according to the reaction partners. Due to the partial electrical charge and molecular structure of oligopeptides for the complex formation lysine can interact more strongly than arginine when the reaction partners have short chain and no steric hindrance. Owing to these reasons the intensity of phosphate stretching vibration is very sensitive according to the circumstance of reaction. From our results we could suggest that we can discriminate any one of the the lysine and arginine in the complicated biological molecule during interaction between nucleotides and proteins. The activity of reaction of two basical oligopeptides is not quite similar for complex formation in aqueous solution. The activity of dipeptides depends upon the structure of molecule and environment for complex formation. Aromatic ring contributes to electrostatic interaction in complexes. The amount of the absolute intensity for pure stacking interaction is smaller than electrostatic interaction in macromolecular complexes.