• Title/Summary/Keyword: Molecular targets

Search Result 635, Processing Time 0.034 seconds

Identification of simvastatin-regulated targets associated with JNK activation in DU145 human prostate cancer cell death signaling

  • Jung, Eun Joo;Chung, Ky Hyun;Kim, Choong Won
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.466-471
    • /
    • 2017
  • The results of this study show that c-Jun N-terminal kinase (JNK) activation was associated with the enhancement of docetaxel-induced cytotoxicity by simvastatin in DU145 human prostate cancer cells. To better understand the basic molecular mechanisms, we investigated simvastatin-regulated targets during simvastatin-induced cell death in DU145 cells using two-dimensional (2D) proteomic analysis. Thus, vimentin, Ras-related protein Rab-1B (RAB1B), cytoplasmic hydroxymethylglutaryl-CoA synthase (cHMGCS), thioredoxin domain-containing protein 5 (TXNDC5), heterogeneous nuclear ribonucleoprotein K (hnRNP K), N-myc downstream-regulated gene 1 (NDRG1), and isopentenyl-diphosphate Delta-isomerase 1 (IDI1) protein spots were identified as simvastatin-regulated targets involved in DU145 cell death signaling pathways. Moreover, the JNK inhibitor SP600125 significantly inhibited the upregulation of NDRG1 and IDI protein levels by combination treatment of docetaxel and simvastatin. These results suggest that NDRG1 and IDI could at least play an important role in DU145 cell death signaling as simvastatinregulated targets associated with JNK activation.

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You;Siyuan Song;Deren Liu;Tongsen Ren;Song Jiang Yin;Peng Wu;Jun Mao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

MicroRNAs: Biogenesis, Roles for Carcinogenesis and as Potential Biomarkers for Cancer Diagnosis and Prognosis

  • Kavitha, Nowroji;Vijayarathna, Soundararajan;Jothy, Subramanion Lachumy;Oon, Chern Ein;Chen, Yeng;Kanwar, Jagat Rakesh;Sasidharan, Sreenivasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7489-7497
    • /
    • 2014
  • MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.

Emerging Targets for Systemic Treatment of Gastric Cancer: HER2 and Beyond

  • In-Ho Kim
    • Journal of Gastric Cancer
    • /
    • v.24 no.1
    • /
    • pp.29-56
    • /
    • 2024
  • In recent years, remarkable progress has been made in the molecular profiling of gastric cancer. This progress has led to the development of various molecular classifications to uncover subtype-specific dependencies that can be targeted for therapeutic interventions. Human epidermal growth factor receptor 2 (HER2) is a crucial biomarker for advanced gastric cancer. The recent promising results of novel approaches, including combination therapies or newer potent agents such as antibody-drug conjugates, have once again brought attention to anti-HER2 targeted treatments. In HER2-negative diseases, the combination of cytotoxic chemotherapy and programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors has become the established standard of care in first-line settings. In the context of gastric cancer, potential biomarkers such as PD-L1 expression, Epstein-Barr virus, microsatellite instability, and tumor mutational burden are being considered for immunotherapy. Recently, promising results have been reported in studies on anti-Claudin18.2 and fibroblast growth factor receptor 2 treatments. Currently, many ongoing trials are aimed at identifying potential targets using novel approaches. Further investigations will be conducted to enhance the progress of these therapies, addressing challenges such as primary and acquired resistance, tumor heterogeneity, and clonal evolution. We believe that these efforts will improve patient prognoses. Herein, we discuss the current evidence of potential targets for systemic treatment, clinical considerations, and future perspectives.

Identification and Characterization of Calcineurin Targets in Cryptococcus neoformans

  • Park, Hee-Soo;Heitman, Joseph;Cardenas, Maria E.
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.17-17
    • /
    • 2016
  • Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic $TiO_2$ enrichment and quantitative mass spectrometry. The identified targets include the zinc finger transcription factor Crz1 and proteins whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and localization and transcriptional activity of Crz1 are controlled by calcineurin. Several of the calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, and are required for survival at high temperature and for virulence. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings propose that calcineurin controls thermal stress and virulence at the transcriptional level via Crz1 and post-transcriptionally by regulating target factors involved in mRNA metabolism.

  • PDF

Evaluation of Amplified-based Target Preparation Strategies for Toxicogenomics Study : cDNA versus cRNA

  • Nam, Suk-Woo;Lee, Jung-Young
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.92-98
    • /
    • 2005
  • DNA microarray analysis of gene expression in toxicogenomics typically requires relatively large amounts of total RNA. This limits the use of DNA microarray when the sample available is small. To confront this limitation, different methods of linear RNA amplification that generate antisense RNA (aRNA) have been optimized for microarray use. The target preparation strategy using amplified RNA in DNA microarray protocol can be divided into direct-incorporation labeling which resulted in cDNA targets (Cy-dye labeled cDNA from aRNA) and indirect-labeling which resulted in cRNA targets (i.e. Cy-dye labeled aRNA), respectively. However, despite the common use of amplified targets (cDNA or cRNA) from aRNAs, no systemic assessment for the use of amplified targets and bias in terms of hybridization performance has been reported. In this investigation, we have compared the hybridization performance of cRNA targets with cDNA targets from aRNA on a 10 K cDNA microarrays. Under optimized hybridization conditions, we found that 43% of outliers from cDNA technique and 86% from the outlier genes were reproducibly detected by both targets hybridization onto cDNA microarray. This suggests that the cRNA labeling method may have a reduced capacity for detecting the differential gene expression when compared to the cDNA target preparation. However, further validation of this discordant result should be pursued to determine which techniques possesses better accuracy in identifying truly differential genes.