References
- Katsogiannou M, Ziouziou H, Karaki S, Andrieu C, Henry de Villeneuve M and Rocchi P (2015) The hallmarks of castration-resistant prostate cancers. Cancer Treat Rev 41, 588-597 https://doi.org/10.1016/j.ctrv.2015.05.003
- Krycer JR and Brown AJ (2013) Cholesterol accumulation in prostate cancer: A classic observation from a modern perspective. Biochim Biophys Acta 1835, 219-229
- Osmak M (2012) Statins and cancer: Current and future prospects. Cancer Lett 324, 1-12 https://doi.org/10.1016/j.canlet.2012.04.011
- Altwairgi AK (2015) Statins are potential anticancerous agents (Review). Oncol Rep 33, 1019-1039 https://doi.org/10.3892/or.2015.3741
- Gordon JA, Midha A, Szeitz A et al (2016) Oral simvastatin administration delays castration-resistant progression and reduces intratumoral steroidogenesis of LNCaP prostate cancer xenografts. Prostate Cancer Prostatic Dis 19, 21-27 https://doi.org/10.1038/pcan.2015.37
- Yu O, Eberg M, Benayoun S et al (2014) Use of statins and the risk of death in patients with prostate cancer. J Clin Oncol 32, 5-11
- Bogoyevitch MA and Arthur PG (2008) Inhibitors of c-Jun N-terminal kinases: JuNK no more? Biochim Biophys Acta 1784, 76-93 https://doi.org/10.1016/j.bbapap.2007.09.013
- Koyuturk M, Ersoz M and Altiok N (2004) Simvastatin induces proliferation inhibition and apoptosis in C6 glioma cells via c-jun N-terminal kinase. Neurosci Lett 370, 212-217 https://doi.org/10.1016/j.neulet.2004.08.020
-
Chen YJ and Chang LS (2014) Simvastatin induces
$NF{\kappa}B$ /p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells. Biochem Pharmacol 92, 530-543 https://doi.org/10.1016/j.bcp.2014.09.026 - Koyuturk M, Ersoz M and Altiok N (2007) Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett 250, 220-228 https://doi.org/10.1016/j.canlet.2006.10.009
- Gopalan A, Yu W, Sanders BG and Kline K (2013) Simvastatin inhibition of mevalonate pathway induces apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 signaling pathway. Cancer Lett 329, 9-16 https://doi.org/10.1016/j.canlet.2012.08.031
- Zhang S, Doudican NA, Quay E and Orlow SJ (2011) Fluvastatin enhances sorafenib cytotoxicity in melanoma cells via modulation of AKT and JNK signaling pathways. Anticancer Res 31, 3259-3265
- Goc A, Kochuparambil ST, Al-Husein B, Al-Azayzih A, Mohammad S and Somanath PR (2012) Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC Cancer 12, e409 https://doi.org/10.1186/1471-2407-12-409
- Chen X, Liu Y, Wu J et al (2016) Mechanistic study of inhibitory effects of atorvastatin and docetaxel in combination on prostate cancer. Cancer Genomics Proteomics 13, 151-160
- Pienaar IS, Schallert T, Hattingh S and Daniels WM (2009) Behavioral and quantitative mitochondrial proteome analyses of the effects of simvastatin: implications for models of neural degeneration. J Neural Transm 116, 791-806 https://doi.org/10.1007/s00702-009-0247-4
- Campos-Martorell M, Salvador N, Monge M et al (2014) Brain proteomics identifies potential simvastatin targets in acute phase of stroke in a rat embolic model. J Neurochem 130, 301-312 https://doi.org/10.1111/jnc.12719
- Ponce J, Brea D, Carrascal M et al (2010) The effect of simvastatin on the proteome of detergent-resistant membrane domains: Decreases of specific proteins previously related to cytoskeleton regulation, calcium homeostasis and cell fate. Proteomics 10, 1954-1965 https://doi.org/10.1002/pmic.200900055
-
Hwang R, Lee EJ, Kim MH et al (2004) Calcyclin, a
$Ca^{2+}$ ion-binding protein, contributes to the anabolic effects of simvastatin on bone. J Biol Chem 279, 21239-21247 https://doi.org/10.1074/jbc.M312771200 - Cho YE, Moon PG, Lee JE et al (2013) Integrative analysis of proteomic and transcriptomic data for identification of pathways related to simvastatin-induced hepatotoxicity. Proteomics 13, 1257-1275 https://doi.org/10.1002/pmic.201200368
-
Hirai T and Chida K (2003) Protein kinase
$C{\zeta}$ ($PKC{\zeta}$ ): activation mechanisms and cellular functions. J Biochem 133, 1-7 https://doi.org/10.1093/jb/mvg017 -
Huang WC and Hung MC (2013) Beyond NF-
${\kappa}B$ activation: nuclear functions of$I{\kappa}B$ kinase${\alpha}$ . J Biomed Sci 20, e3 https://doi.org/10.1186/1423-0127-20-3 - Liu JJ and Zhang J (2013) Sequencing systemic therapies in metastatic castration-resistant prostate cancer. Cancer Control 20, 181-187 https://doi.org/10.1177/107327481302000306
-
Xie F, Liu J, Li C and Zhao Y (2016) Simvastatin blocks TGF-
${\beta}1$ -induced epithelial-mesenchymal transition in human prostate cancer cells. Oncol Lett 11, 3377-3383 https://doi.org/10.3892/ol.2016.4404 -
Jiang HL, Sun HF, Gao SP et al (2015) Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-
${\beta}$ /SMAD signaling. Oncotarget 6, 16352-16365 https://doi.org/10.18632/oncotarget.3877 - Vincent EE, Elder DJ, Phillips L et al (2011) Overexpression of the TXNDC5 protein in non-small cell lung carcinoma. Anticancer Res 31, 1577-1582
- Wang L, Song G, Chang X et al (2015) The role of TXNDC5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway. Oncogene 34, 4735-4745 https://doi.org/10.1038/onc.2014.401
-
Dixon KM, Lui GY, Kovacevic Z et al (2013) Dp44mT targets the AKT, TGF-
${\beta}$ and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br J Cancer 108, 409-419 https://doi.org/10.1038/bjc.2012.582 - Barboro P, Salvi S, Rubagotti A et al (2014) Prostate cancer: Prognostic significance of the association of heterogeneous nuclear ribonucleoprotein K and androgen receptor expression. Int J Oncol 44, 1589-1598 https://doi.org/10.3892/ijo.2014.2345
- Barboro P, Borzi L, Repaci E, Ferrari N and Balbi C (2013) Androgen receptor activity is affected by both nuclear matrix localization and the phosphorylation status of the heterogeneous nuclear ribonucleoprotein K in antiandrogen-treated LNCaP cells. PLoS One 8, e79212 https://doi.org/10.1371/journal.pone.0079212
- Clendening JW, Pandyra A, Boutros PC et al (2010) Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A 107, 15051-15056 https://doi.org/10.1073/pnas.0910258107
- Berthelot K, Estevez Y, Deffieux A and Peruch F (2012) Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis. Biochimie 94, 1621-1634 https://doi.org/10.1016/j.biochi.2012.03.021
- Sharon C, Baranwal S, Patel NJ et al (2015) Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget 6, 15332-15347 https://doi.org/10.18632/oncotarget.3684
Cited by
- Bioactivity evaluations of betulin identified from the bark of Betula platyphylla var. japonica for cancer therapy vol.41, pp.8, 2018, https://doi.org/10.1007/s12272-018-1064-9