• Title/Summary/Keyword: Molecular structures

Search Result 1,356, Processing Time 0.032 seconds

Preparation and validation of Chitosan-phthalocyanine complex - absorber of mutagens and carcinogens -

  • Rhee, Hee-Kyung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.175-175
    • /
    • 2003
  • Phthalocyanine, a water soluble porphyrin derivative and dye, is known to inhibit the mutagenic and carcinogenic actions of compounds having polycyclic structures, e.g. heterocyclic amines. There is evidence that this adsorbent effect shows by a complex formation between the porphyrin-like structure of phthalocyanine and the planar molecular surfaces of theses compounds. That phthalocyanine can form an insoluble material when mixed with chitosan, a polyglucosamine, and that the solid chitosan-phthalocyanine, named Eco-Blue, thus prepared can efficiently adsorb polycyclic mutagenic compounds. The adsorption was experimented by UV/VIS spectrometry. The adsorbent effects of mutagens and carcinogens was identified by Gas chromatography (GC) and Ames Test. The adsorbed polycyclic mutagens were elutable with buffer, but only to small extents. Chitosan-phthalocyanine may be expected to be useful as an adsorbent against polycyclic mutagens and carcinogens.

  • PDF

Structure-Activity Relationship for Antidepressant Effect of Luteolin and Its Related Derivatives Isolated from Taraxacum mongolicum

  • Hwang, Keum Hee;Lee, Nam Kyung;Kim, Gun Hee
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • The inhibitory effect and the structure-activity relationships of luteolin and its related derivatives isolated from Taraxacum mongolicum against MAO activities were investigated. The activity-guided isolation of extract from Taraxacum mongolicum led to the isolation of three flavonoids, luteolin, diosmetin, and luteolin-7-glucoside, a polyphenol, chlorogenic acid, a tyrosine and a uridine. The inhibitory activities of luteolin and its related derivatives against MAOs activities are dependent on their molecular structures. The presence of the phenolic hydroxy group at para-position is the active site for MAO-A inhibition as well as of MAO-B. The methoxy group has no potential on MAO-A inhibition. An additional phenolic hydroxy group at the ortho-position alleviates about 4-fold MAO-A inhibitory activity of phenolic hydroxy group at para-position. A carboxylic group seems to be critical for DBH inhibition and has no effects on MAO.

Effect of pore characteristics of activated carbon on adsorption of natural organic matter (활성탄의 세공이 자연유기물질의 흡착에 미치는 영향)

  • Pak, Jung-Sun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.249-255
    • /
    • 2011
  • It is complicate problem to optimize removing natural organic matter (NOM) by activated carbon in drinking water treatment because the activated carbon has heterogeneous surface area and pore structure. Seven different coals based activated carbons which have different pore structures were used in the study. Sand filtered effluents which normally used as GAC adsorber influent were used. The molecular weight distribution showed that most of the NOM was bigger than 10,000Da. In this study, systematical approaches such as characteristics of surface area and pore volume were evaluated on NOM adsorption. Especially, the adsorption capacities for NOM were evaluated by effect of micro-pores and meso-pores in surface area and pore structure. The results show that the higher ratio of meso-pore compare to the micro-pore has not only the better adsorption capacities for NOM but also the higher strongly-adsorbable fraction. Therefore, the overall adsorption capacity is increased with higher meso-pore ratio with existing of reasonable micro-pore surface area and volume.

Novel Sesquiterpenoid Compounds from Culture Broth of Stereum hirsutum

  • Cho, Yang-Rae;Yun, Bong-Sik;Lee, In-Kyoung;Lee, Tae-Ho;Yoo, Ick-Dong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.130-130
    • /
    • 1998
  • Two novel compounds SSC1 and SSC2 were isolated from culture broth produced from the strain of Stereum hirsutum by using of YM broth. They were isolated through HP-20 column chromatography, silica gel column chromatography and preparative HPLC, successively. The molecular formulas of SSC1 and SSC2. were determined as C$\sub$15/H$\sub$22/O$_3$ by high resolution EI -mass. The chemical structures of SSC1 and SSC2 were determined as sesquiterpenoid compounds by spectroscopic analysis of UV, IR, $^1$H NMR, $\^$13/C NMR, DEPT, HMQC and HMBC spectrum.

  • PDF

Epitaxial Growth of Bi2Se3 on a Metal Substrate

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.306-306
    • /
    • 2011
  • Three dimensional(3D) topological insulators(TIs) of Bi binary alloys are characterized by a bulk energy gap with strong spin-orbit coupling and metallic surface states protected by time-reversal symmetry. It was reported that film forms of such materials were advantageous over bulk forms due to less defect density and better crystallinity. So far, the films have been prepared on several substrates including semiconductors and graphene. But, there were no studies on metal substrates. For electronic transport experiments and device applications, it is necessary to know epitaxial relation between TIs and metal electrodes. In this study, Atomically flat films of Bi2Se3 were grown on a Au(111) metal substrate by in-situ molecular beam epitaxy. Using home-built scanning tunneling microscope, we observed hexagonal atomic structures which corresponded to the outmost selenium atomic layer of Bi2Se3. Triangular-shaped defects known as Selenium vacancy were also found.

  • PDF

Control the Au(111) Work Function by Substituted Aromatic Thiol Self-Assembled Monolayers

  • Gang, Hun-Gu;Ito, Eisuke;Okabayashi, Youichi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.243-243
    • /
    • 2012
  • Self-assembled monolayers (SAMs) prepared by aromatic thiols on gold surfaces have much larger potential for electronic device applications due to their electronic properties. In this study, the formation and structures of SAMs prepared by benzenethiol (BT), toluenethiol (TT), 2-fluorobenzenethiol (2-FBT), 3-fluorobenzenethiol (3-FBT), 4-fluorobenzenethiol (4-FBT), 4-chlorobenzenethiol (4-CBT), 4-fluorobenzenemethanethiol (4-FBMT), and 4-chlorobenzenemethanethiol (4-CBMT) on Au(111) were examined using scanning tunneling microscopy (STM) and Kelvin probe (KP) to explore the structure and electronic interface properties of eight differently substituted aromatic thiol SAMs on Au(111). And these values are compared with gas phase dipole moments computed by quantum chemical calculations for individual thiol molecules. It was revealed that all eight thiol-molecules form uniform SAMs on Au(111) at $75^{\circ}C$ compared to lower solution temperature by STM observation. The work function change obtained in the KP measurements and calculated molecular dipole moments have the linear relationship while the 4-FBMT and 4-CBMT deviate from this tendency.

  • PDF

Microscopic Surface Dynamics Studied by Scanning Probe Microscopy

  • Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.111-111
    • /
    • 2011
  • Arrangement of individual atoms and molecules with atomic precision and understanding the resulting properties at the molecular level are ultimate goals of chemistry, biology, and materials science. For the past three decades, scanning probe microscopy has made strides towards these goals through the direct observation of individual atoms and molecules, enabling the discovery of new and unexpected phenomena. This talk will discuss the origin of forces governing motion of small organic molecules and their extended self-assembly into two-dimensional surface structures by direct observation of individual molecules using scanning tunneling microscopy (STM). In addition, atomic force microscopy (AFM) is utilized for the investigation of fundamental mechanisms of bone mineral dissolution by examining atomically well characterized simulated bone minerals under aqueous solution environments.

  • PDF

이온통로에서 음이온 투과성 연구

  • Seo, Bong-Im;Sim, Eun-Ji
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.287-299
    • /
    • 2014
  • Bicarbonate anion ($HCO_3{^-}$) takes the role of major buffer systems in our body by maintaining the pH at 7.4. Epithelial $HCO_3{^-}$ secretion also hydrolyzes the mucus which protects body from noxious infections. It has been widely known that such infections are closely related to $HCO_3{^-}$ permeability through membrane and, thus, increasing the $HCO_3{^-}$ permeability is essential. To evaluate the $HCO_3{^-}$ permeability through ion channels, the free energy changes relevant to ion pumping are calculated with the Integral Equation Formalism-PCM (IEF-PCM) theory. Molecular structures of various anions including $HCO_3{^-}$ were optimized with the density functional theory at the level of B3LYP/6-311++G(d,p) in gas and solution phase. In addition, the anion permeability is significantly influenced by the relative size of the anion and pore. We introduce a shifted volume factor model that describes the pore size effect when the charged solutes transfer through ion channels. We found excellent agreement between experimental and calculated permeability when our novel model of the size effect was taken into account to.

  • PDF

Selective Separations Using Molecularly Imprinted Membranes (분자 각인 막의 선택적 분리)

  • Lee, Jeong-Woo;Park, Joong-Kon
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.133-141
    • /
    • 2005
  • This review presents the preparation, transport mechanism and application of molecularly imprinted membranes (MIM). Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIM have some advantages; a high capacity due to a large surface area, faster transport of substrate molecules and faster equilibrium of binding cavities compared to molecularly imprinted particles. MIM were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. MIM can be prepared by in-situ polymerization, wet phase inversion, dry phase inversion, and surface imprinting method. MIM can continuously separate mixtures based on facilitated or retarded diffusion of the template. MIM can change their permeability in the presence of templates. MIM have a potential to be used to separate chiral compounds and materials with similar structures. However the application of MIM by the chemical industries is still in its infancy stages.