• Title/Summary/Keyword: Molecular structures

Search Result 1,356, Processing Time 0.029 seconds

Isolation and Structural Identification of Antioxidant Substances from Ethyl Acetate Extract of Conyza canadensis (망초(Conyza canadensis) Ethyl Acetate 추출물의 항산화성 물질의 분리와 동정)

  • Hyun Sook Song
    • Journal of Naturopathy
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • Background: As a result of analyzing the components of wild Conyza canadensis, it contains physiologically active ingredients, so it is necessary to identify the compound. Purposes: It was to study the compound's molecular structure; a previous study showed that C. canadensis contains antioxidant substances. Methods: The ultrasonic pulverized lysate of C. canadensis stem and leaves was first extracted with 90% methanol and then five organic solvents. Next, the extracts was fractionated by HPLC, LC/MS chromatography, and NMR analyzers identified the molecular structure. Results: 100 g of dry C. canadensis was sonicated in 90% methanol and concentrated under reduced pressure to 11.96 g of a crude extract. Then, this crude was extracted with five types of solvents to obtain 123.8 mg of n-hexane, 448.2 mg of dichloromethane, 1047.7 mg of ethyl acetate (EA), 2563.8 mg of butanol, and 7.04 g of water. The EA extracts were fractionated by LC-MS and then re-fractionated to obtain F1 to F20. Next, the F15 was further fractionated to obtain nine fine fractions. Finally, the F17 fraction was re-fractionated to obtain ten fine fractions. As a result of LC-MS and NMR spectrometer analysis of the F15-7, the structure of this compound was confirmed as 3,5-dicaffeoylquinic acid. As a result of examining the structures of the F17-4 and F17-5 fractions, Quercetin-3-o-β-galactose was identified. In addition, the form of the F17-10 was confirmed to be 1,3,4-tri-caffeoylquinic acid. Conclusions: This study demonstrated that C. canadensis contained phenolic antioxidants, and its utilization may be expected.

Potential Energy Surfaces for Ligand Exchange Reactions of Square Planar Diamagnetic PtY2L2 Complexes:Hydrogen Bond (PtY2L2···L') versus Apical (Y2L2Pt···L') Interaction

  • Park, Jong-Keun;Kim, Bong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1405-1417
    • /
    • 2006
  • The geometrical structures, potential energy surfaces, and energetics for the ligand exchange reactions of tetracoordinated platinum $(PtY_2L_2\;:\;Y,\;L=Cl^-,\;OH^-,\;OH_2,\;NH_3)$ complexes in the ligand-solvent interaction systems were investigated using the ab initio Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The potential energy surfaces for the ligand exchange reactions used for the conversions of $(PtCl_4\;+\;H_2O)^{^\ast_\ast}\;to\;[PtCl_3(H_2O)\;+\;Cl^-]$ and $[Pt(NH_3)_2Cl_2\;+\;H_2O]$$[Pt(NH_3)_2Cl_2\;+\;H_2O]$ to $[Pt(NH_3)_2Cl(H_2O)\;+\;Cl^-] $ were investigated in detail. For these two exchange reactions, the transition states $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime])^{^\ast_\ast} $ correspond to complexes such as $(PtCl_4{\cdot}{\cdot}{\cdot}H_2O)^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$, respectively. In the transition state, $([PtCl_4{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]]^{^\ast_\ast})$ have a kind of 6-membered $(Pt-Cl{\cdot}{\cdot}{\cdot}HOH{\cdot}{\cdot}{\cdot}Cl)$ and $(Pt-OH{\cdot}{\cdot}{\cdot}Cl{\cdot}{\cdot}{\cdot}HN)$ interactions, respectively, wherein a central Pt(II) metal directly combines with a leaving $Cl^-$ and an entering $H_2O$. Simultaneously, the entering $H_2O$ interacts with a leaving $Cl^-$. No vertical one metal-ligand interactions $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime]) $ are found at the axial positions of the square planar $(PtY_2L_2)$ complexes, which were formed via a vertically associative mechanism leading to $D_{3h}$ or $C_{2v}$-transition state symmetry. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes are also examined quantitatively. Schematic diagrams for the dissociation reactions of {PtCl4(H2O)n(n=2,4)} into {$PtCl_3(H_2O)_{(n-2)}\;+\;Cl^-(H_2O)_2$} and the binding energies {$PtCl_4(H_2O)_n$(n = 1-5)} of $PtCl_4$ with water molecules are drawn.

Monitoring of genetically close Tsaiya duck populations using novel microsatellite markers with high polymorphism

  • Lai, Fang-Yu;Chang, Yi-Ying;Chen, Yi-Chen;Lin, En-Chung;Liu, Hsiu-Chou;Huang, Jeng-Fang;Ding, Shih-Torng;Wang, Pei-Hwa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.888-901
    • /
    • 2020
  • Objective: A set of microsatellite markers with high polymorphism from Tsaiya duck were used for the genetic monitoring and genetic structure analysis of Brown and White Tsaiya duck populations in Taiwan. Methods: The synthetic short tandem repeated probes were used to isolate new microsatellite markers from the genomic DNA of Tsaiya ducks. Eight populations, a total of 566 samples, sourced from Ilan Branch, Livestock Research Institute were genotyped through novel and known markers. The population genetic variables were calculated using optional programs in order to describe and monitor the genetic variability and the genetic structures of these Tsaiya duck populations. Results: In total 24 primer pairs, including 17 novel microsatellite loci from this study and seven previously known loci, were constructed for the detection of genetic variations in duck populations. The average values for the allele number, the effective number of alleles, the observed heterozygosity, the expected heterozygosity, and the polymorphism information content were 11.29, 5.370, 0.591, 0.746, and 0.708, respectively. The results of analysis of molecular variance and principal component analysis indicated a contracting Brown Tsaiya duck cluster and a spreading White Tsaiya duck cluster. The Brown Tsaiya ducks and the White Tsaiya ducks with Pekin ducks were just split to six clusters and three clusters when K was set equal to 6 and 3 in the Bayesian cluster analysis. The individual phylogenetic tree revealed eight taxa, and each individual was assigned to its own population. Conclusion: According to our study, the 24 novel microsatellite markers exhibited a high capacity to analyze relationships of inter- and intra-population in those populations with a relatively limited degree of genetic diversity. We suggest that duck farms in Taiwan could use the new (novel) microsatellite set to monitor the genetic characteristics and structures of their Tsaiya duck populations at various intervals in order to ensure quality breeding and conservation strategies.

Theoretical Investigation for the Molecular Structures and Dimerization Energies for Complexes of H2O-C6H6 Dimer (물(H2O)과 벤젠(C6H6) 이합체의 분자 구조 및 결합 에너지에 관한 이론 연구)

  • Sun, Ju-Yong;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.7-16
    • /
    • 2009
  • The global minimum structures of the benzene-water, Bz-$H_2O$ and benzene-water cation complex, [Bz-$H_2O]^+$ have been investigated using ab initio and density functional theory(DFT) with very large basis sets. The highest levels of theory employed in this study are B3LYP/cc-pVQZ for geometry optimization and MP2/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ for binding energy. The harmonic vibrational frequencies and IR intensities are also determined at the various levels of theory to confirm whether the structure of water complex is affected by the presence of benzene. The binding energies of Bz-$H_2O$ (N-1) structure are predicted to be 3.92 kcal/mol ($D_e$) and 3.11 kcal/mol ($D_0$) after the zero-point vibrational energy correction at the MP2/cc-pVQZ//B3LYP/cc-pVQZ level of theory. The binding energies of [Bz-$H_2O]^+$ (C-1) structure are predicted to be 9.06 kcal/mol for $D_e$ and 7.82 kcal/mol for $D_0$ at the same level of theory.

Theoretical and quantitative structural relationships of the electrochemical properties of Cis-unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R = PCBM, p-EHO-PCBM, and p-EHO-PCBA)

  • Taherpour, Avat Arman;Biuki, Farzaneh
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.145-152
    • /
    • 2011
  • Since the discovery of fullerenes as a class of nanostructure compounds, many potential applications have been suggested for their unusual structures and properties. The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerene. Fullerenes $C_n$ are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerenes and other molecules is thought to involve the transfer of electrons between the molecules surrounding the fullerene cage. One class of electron transfer molecules is the methanofullerene derivatives ([6,6]-phenyl $C_{61}$-butyric acid methyl ester (PCBM), 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid methyl ester (p-EHO-PCBM), and 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid (p-EHO-PCBA), 10-12). It has been determined that $C_{60}$ does not obey IPR. Supramolecular complexes 1-9 and 10-12 are shown to possess a previously unreported host.guest interaction for electron transfer processes. The unsaturated, cis-geometry, thiocrown ethers, (1-9) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively), are a group of crown ethers that display interesting physiochemical properties in the light of their conformational restriction compared with a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate structural data to various chemical and physical properties. To establish a good relationship between the structures of 1-9 with 10-12, a new index is introduced, ${\mu}_{cs}$. This index is the ratio of the sum of the number of carbon atoms ($n_c$) and the number of sulfur atoms ($n_s$) to the product of these two numbers for 1-9. In this study, the relationships between this index and oxidation potential ($^{ox}E_1$) of 1-9, as well as the first to third free energies of electron transfer (${\Delta}G_{et(n)}$, for n = 1-3, which is given by the Rehm-Weller equation) between 1-9 and PCBM, p-EHO-PCBM, and p-EHO-PCBA (10-12) as [X-UT-Y]@R(where R is the adduct PCBM, p-EHO-PCBM, and p-EHO-PCBA group) (13-15) supramolecular complexes are presented and investigated.

Structural Origin for the Transcriptional Activity of Human p53

  • Lee, Si-Hyung;Park, Kyu-Hwan;Kim, Do-Hyung;Choung, Dong-Ho;Suk, Jae-Eun;Kim, Do-Hyung;Chang, Jun;Sung, Young-Chul;Choi, Kwan-Yong;Han, Kyou-Hoon
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.73-79
    • /
    • 2001
  • Transcriptional activation domains are known to be inherently "unstructured" with no tertiary structure. A recent NMR study, however, has shown that the transactivation domain in human p53 is populated with an amphipathic helix and two nascent turns. This suggests that the presence of such local secondary structures within the overall "unstructured" structural framework is a general feature of acidic transactivation domains. These pre-existing local structures in p53, formed selectively by positional conserved hydrophobic residues that are known to be critical for transcriptional activity, thus appear to constitute the specific structural motifs that regulate recognition of the p53 transactivation domain by target proteins. Here, we report the results of a NMR structural comparison between the native human p53 transactivation domain and an inactive mutant (22L,23W$\rightarrow$22R,23S). Results show that the mutant has an identical overall structural topology as the native protein, to the extent that the amphipathic helix formed by the residues 18T 26L within the native p53 transactivating domain is preserved in the double mutant. Therefore, the lack of transcriptional activity in the double mutant should be ascribed to the disruption of the essential hydrophobic contacts between the p53 transactivation domain and target proteins due to the (22L,23W$\rightarrow$22R,23S) mutation.

  • PDF

Influence of the Micropore Structures of PAN-based Activated Carbon Fibers on Nerve Agent Simulant Gas (DMMP) Sensing Property (PAN계 활성탄소섬유의 미세기공 구조가 신경작용제 유사가스(DMMP) 감응 특성에 미치는 영향)

  • Kang, Da Hee;Kim, Min-Ji;Jo, Hanjoo;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.191-195
    • /
    • 2018
  • In this study, the influence of microporous structures of activated carbon fibers (ACFs) on dimethyl methylphosphonate (DMMP) gas sensing properties as a nerve agent simulant was investigated. The pore structure was given to carbon fibers by chemical activation process, and an electrode was fabricated for gas sensors by using these fibers. The PAN based ACF electrode, which is an N-type semiconductor, received electrons from a reducing gas such as DMMP, and then electrical resistance of its electrode finally decreased because of the reduced density of electron holes. The sensitivity of the fabricated DMMP gas sensor increased from 1.7% to 5.1% as the micropore volume increased. It is attributed that as micropores were formed for adsorbing DMMP whose molecular size was 0.57 nm, electron transfer between DMMP and ACF was facilitated. In conclusion, it is considered that the appropriate pore structure control of ACFs plays an important role in fabricating the DMMP gas sensor with a high sensitivity.

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Occurrence of Nuclear Inclusions in Plant Cells (식물세포 내 핵 함유구조 발달 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.229-234
    • /
    • 2011
  • The occurrence of nuclear inclusions has been reported in various plant groups from primitive ferns to higher flowering plants. Their presence within a group seems to be randomly distributed without any phylogenetic relationships among species. According to the current survey, nuclear inclusions have been widely documented in more than several hundreds of species from various families of plants. The morphology and internal structures of nuclear inclusions are diverse and at least five types of inclusions develop within plant nuclei; amorphous, crystalline, fibrous, lamellar, and tubular form. Among these types, crystalline inclusions are the ones that are the most frequently reported. The inclusions are not bound by membranes and appear to be related to the nucleoli, either spatially by a close association or by an inverse relationship in size during development. The idea that nuclear inclusions are of a proteinaceous nature has been widely accepted. Further link to nucleolar activity as a protein storing site has also been suggested based on the association between the nucleolus and nuclear inclusions. Various investigations of nuclear inclusions have revealed more information about their structural features, but characterizing their precise function and subunit complexity employing molecular analysis and 3-D reconstruction remains to be elucidated. Tilting and tomography of serial sections with appropriate image processing can provide valuable information on their subunit(s). The present review summarizes discussion about different nuclear inclusions in plants from previous works, giving special attention to their fine, ultrastructural morphology, function, and origin.

Recent Progress on Metal-Organic Framework Membranes for Gas Separations: Conventional Synthesis vs. Microwave-Assisted Synthesis (기체분리용 금속유기구조체 분리막의 최근 연구 동향 및 성과)

  • Ramu, Gokulakrishnan;Jeong, Hae-Kwon
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.1-42
    • /
    • 2017
  • Metal-organic frameworks (MOFs) are nanoporous materials that consist of organic and inorganic moieties, with well-defined crystalline lattices and pore structures. With a judicious choice of organic linkers present in the MOFs with different sizes and chemical groups, MOFs exhibit a wide variety of pore sizes and chemical/physical properties. This makes MOFs extremely attractive as novel membrane materials for gas separation applications. However, the synthesis of high-quality MOF thin films and membranes is quite challenging due to difficulties in controlling the heterogeneous nucleation/growth and achieving strong attachment of films on porous supports. Microwave-based synthesis technology has made tremendous progress in the last two decades and has been utilized to overcome some of these challenges associated with MOF membrane fabrication. The advantages of microwaves as opposed to conventional synthesis techniques for MOFs include shorter synthesis times, ability to achieve unique and complex structures and crystal size reductions. Here, we review the recent progress on the synthesis of MOF thin films and membranes with an emphasis on how microwaves have been utilized in the synthesis, improved properties achieved and gas separation performance of these films and membranes.