• 제목/요약/키워드: Molecular sequence analyses

검색결과 299건 처리시간 0.036초

범용성 DNA 바코드(matK, rbcL) 분석을 통한 독활(獨活) 유전자 감별용 Marker Nucleotide 발굴 (Identification of Marker Nucleotides for the Molecular Authentication of Araliae Continentalis Radix Based on the Analysis of Universal DNA Barcode, matK and rbcL, Sequences)

  • 김욱진;양선규;최고야;문병철
    • 대한본초학회지
    • /
    • 제31권5호
    • /
    • pp.15-23
    • /
    • 2016
  • Objectives : Araliae Continentalis Radix and Angelicae Pubescentis Radix have been used as the same medicinal name Korean and Chinese traditional medicines, respectively. The authentic Araliae Continentalis Radix is described only the root of Aralia continentalis in the Korean Pharmarcopoeia. However, the dried root of Angelica biserrata, Levisticum officinale, or Heracleum moellendorffii also has been distributed adulterants of Araliae Continentalis Radix. To develop a reliable method for identifying Araliae Continentalis Radix from adulterants, we carried out the analyses of universal DNA barcode sequences.Methods : Four plants species were collected from different habitate and nucleotide sequences of matK and rbcL were analyzed. The species-specific sequences and phylogenetic relationship were estimated using entire sequences of two DNA barcodes, respectively.Results : In comparative analysis of matK sequences, we were identified 104 positions of marker nucleotide for Ar. continentalis, 3 for An. biserrata, 4 for L. officinale and 8 for H. moellendorffii enough to distinguish individual species, respectively. Furthermore, we obtained marker nucleotides in rbcL at 42 positions for Ar. continentalis, 5 for An. biserrata and 2 for H. moellendorffii, but not for L. officinale. The phylogenetic tree of matK and rbcL were showed that all samples were clustered into four groups constituting homogeneous clades within the species.Conclusions : We confirmed that species-specific marker nucleotides of matK sequence provides distinct genetic information enough to identify four species. Therefore, we suggest that matK gene is useful DNA barcode for discriminating authentic Araliae Continentalis Radix from inauthentic adulterants.

한국에서 분리된 전염성 조혈괴저 바이러스의 non-virion (NV) 단백질의 유전자 클로닝 및 바이러스 증식에서의 역할 (Cloning of the non-virion (NV) of a Korean Isolate of Infectious Hematopoietic Necrosis and Identification of the Role of the NV in IHNV Replication)

  • 문창훈;조화자;윤원준;박정재;박정민;김현주;도정완;이주양;임채렬
    • 미생물학회지
    • /
    • 제36권2호
    • /
    • pp.103-108
    • /
    • 2000
  • 한국에서 분리된 전염성 조혈괴저바이러스(infectious hematopoietic necrosis virus, IHNV)인 IHNV-PRT의 non-viron(NV)단백질을 암호화하고 있는 cDNA를 클로닝하여 이들의 염기서열을 분석하였다. NV는 336bpzmrl의 open reading frame을 포함하였으며 이로부터 111개의 아미노산 서열을 외국에서 분리된 IHNV들과 비교 분석한 결과 90-95%의 상동성을 보였다. 이러한 사실은 INHV의 NV단백질 유전자들은 IHNV의 strain에 관계없이 매우 보존되어 있음을 나타내준다. Northern blotting을 사용하여 NV의 발현을 측정한 결과 감염 후 20 시간분터 발현이 증가함을 확인 힐수 있었다. NV가 바이러스의 증식에 필요한지의 여부를 확인하기 위하여 바이러스 유전자의 antisense DNA를 사용하여 바이러스 증식 억제에 관한 실험을 수행하였다. Glycoprotein (G)의 antisense DNA를 처리한 경우 바이러스의 증식이 거의 억제된 반면 NV에 대한 antisense DNA를 처리한 경우 바이러스 증식에 거의 변화가 없었다. 이로부터 배양중인 세포가 있어서 NV는 증식에 필수적이지 않은 것으로 판단된다.

  • PDF

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons

  • Ng, Shee Ping;Palombo, Enzo A.;Bhave, Mrinal
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권6호
    • /
    • pp.742-753
    • /
    • 2012
  • Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.

Development of EST-SSR Markers for Evaluation of Genetic Diversity and Population Structure in Finger Millet (Eleusine coracana (L.) Gaertn.)

  • Lee, Myung Chul;Choi, Yu-Mi;Hyun, Do-Yoon;Lee, Sukyeung;Kim, Jin-Hee;Oh, Sejong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.105-105
    • /
    • 2018
  • Finger millet, Eleusine coracana Gaertn., is more nutritious than other cereals and millets and widely cultivate in tropical regions of the world. However, status of its genetic diversity remained concealed due to lack of research work in this species. In recent years, microsatellites have become the most used markers for studying population genetic diversity. In present study, genetic diversity and structure of different populations of finger millet from Africa and South Asia was examined at molecular level using newly developed EST-Simple Sequence Repeat (EST-SSR) markers using a total of 1,927 ESTs of Eleusine coracana available in the NCBI database. In total, 46 primers produced 292 alleles in a size range of 100-500 bp and mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.372 and 1.04, respectively. 46 primers showed polymorphism and 21 primers were identified as having a PIC value above 0.5. Principal coordinates analysis and the dendrogram constructed out of combined data of both markers showed grouping of finger millet accessions to their respective area of collection. The 156 accessions was classified into four groups, such as three groups of Africa collection and one group of Asia. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.

  • PDF

Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing

  • Park, Doori;Kim, Dongin;Jang, Green;Lim, Jongsung;Shin, Yun-Ji;Kim, Jina;Seo, Mi-Seong;Park, Su-Hyun;Kim, Ju-Kon;Kwon, Tae-Ho;Choi, Ik-Young
    • Genomics & Informatics
    • /
    • 제13권3호
    • /
    • pp.81-85
    • /
    • 2015
  • Molecular characterization technology in genetically modified organisms, in addition to how transgenic biotechnologies are developed now require full transparency to assess the risk to living modified and non-modified organisms. Next generation sequencing (NGS) methodology is suggested as an effective means in genome characterization and detection of transgenic insertion locations. In the present study, we applied NGS to insert transgenic loci, specifically the epidermal growth factor (EGF) in genetically modified rice cells. A total of 29.3 Gb (${\sim}72{\times}coverage$) was sequenced with a $2{\times}150bp$ paired end method by Illumina HiSeq2500, which was consecutively mapped to the rice genome and T-vector sequence. The compatible pairs of reads were successfully mapped to 10 loci on the rice chromosome and vector sequences were validated to the insertion location by polymerase chain reaction (PCR) amplification. The EGF transgenic site was confirmed only on chromosome 4 by PCR. Results of this study demonstrated the success of NGS data to characterize the rice genome. Bioinformatics analyses must be developed in association with NGS data to identify highly accurate transgenic sites.

어류치사성 Cochlodinium polykrikoides 적조생물의 유전적 진화 및 특성 (Genetic Evolution and Characteristics of Ichthyotoxic Cochlodinium polykrikoides(Gymnodiniales, Dinophyceae))

  • 조은섭;정창수
    • 생명과학회지
    • /
    • 제17권11호
    • /
    • pp.1453-1463
    • /
    • 2007
  • 본 연구는 유해성 적조생물인 Cochlodinium polykrikoides의 유전적 계통진화를 설명하기 위하여 24 종의 개체에 대한 SSU을 대상으로 분석했다. C. polykrikoides는 와편모조류와 밀접한 단일 계통군을 형성하고 있다. Neighbor-joining 혹은 parsimony 분석에 의하면 C. polykrikoides는 Gymnodiniales 보다 Prorocentrals 목 (order)에 훨씬 근접한 100% 유연관계를 보이고 있으며, 과 (family)로 분석해 보면 Gymnodiniaceae에 속해 있고, 특히 Prorocentrum micans와는 매우 밀접한 관계를 보이고 있다. 형태적으로는 Gyrodinium속 (genus)에 가깝지만, 유전적으로는 Gymnodinium 속에 근접하고 있다. C. polykrikoides는 와편모조류 중에서 독립적인 계통군을 유지하고 있다. 따라서 p. micans는 Gymnodinium의 조상으로 추측되며, C. polykrikoides는 P. micans와 Gymnodinium 속의 중간단계인 것으로 보인다.

Physicochemical and Microbiological Characterization of Protected Designation of Origin Ezine Cheese: Assessment of Non-starter Lactic Acid Bacterial Diversity with Antimicrobial Activity

  • Uymaz, Basar;Akcelik, Nefise;Yuksel, Zerrin
    • 한국축산식품학회지
    • /
    • 제39권5호
    • /
    • pp.804-819
    • /
    • 2019
  • Ezine cheese is a non-starter and long-ripened cheese produced in the Mount of Ida region of Canakkale, Turkey, with a protected designation of origin status. Non-starter lactic acid bacteria (NSLAB) have a substantial effect on the quality and final sensorial characteristics of long-ripened cheeses. The dominance of NSLAB can be attributed to their high tolerance to the hostile environment in cheese during ripening relative to many other microbial groups and to its ability to inhibit undesired microorganisms. These qualities promote the microbiological stability of long-ripened cheeses. In this study, 144 samples were collected from three dairies during the ripening period of Ezine cheese. Physicochemical composition and NSLAB identification analyses were performed using both conventional and molecular methods. According to the results of a 16S rRNA gene sequence analysis, 13 different species belonging to seven genera were identified. Enterococcus faecium (38.42%) and E. faecalis (18.94%) were dominant species during the cheese manufacturing process, surviving 12 months of ripening together with Lactobacillus paracasei (13.68%) and Lb. plantarum (11.05%). The results indicate that NSLAB contributes to the microbiological stability of Ezine cheese over 12 months of ripening. The isolation of NSLAB with antimicrobial activity, potential bacteriocin producers, yielded defined collections of natural NSLAB isolates from Ezine cheese that can be used to generate specific starter cultures for the production of Ezine cheese (PDO).

Detection of Single Nucleotide Polymorphism in Human IL-4 Receptor by PCR Amplification of Specific Alleles

  • Hwang, Sue Yun;Kim, Seung Hoon;Hwang, Sung Hee;Cho, Chul Soo;Kim, Ho Youn
    • Animal cells and systems
    • /
    • 제5권2호
    • /
    • pp.153-156
    • /
    • 2001
  • A key aspect of genomic research in the “post-genome era”is to associate sequence variations with heritable phenotypes. The most common variations in the human genome are single nucleotide polymorphisms (SNPs) that occur approximately once in every 500 to 1,000 bases. Although analyzing the phenotypic outcome of these SNPs is crucial to facilitate large-scale association studies of genetic diseases, detection of SNPs from an extended number of human DNA samples is often difficult, labor-intensive and time-consuming. Recent development in SNP detection methods using DNA microarrays and mass spectrophotometry has allowed automated high throughput analyses, but such equipments are not accessible to many scientists. In this study, we demonstrate that a simple PCR-based method using primers with a mismatched base at the 3'-end provides a fast and easy tool to identify known SNPs from human genomic DNA in a regular molecular biology laboratory. Results from this PCR amplification of specific alleles (PASA) analysis efficiently and accurately typed the Q576R polymorphism of human IL4 receptor from the genomic DNAs of 29 Koreans, including 9 samples whose genotype could not be discerned by the conventiona1 PCR-SSCP (single strand conformation polymorphism) method. Given the increasing attention to disease-associated polymorphisms in genomic research, this alternative technique will be very useful to identify SNPs in large-scale population studies.

  • PDF

범부채에서 녹병균 Puccinia iridis의 동정 (Identification of Puccinia iridis on Iris domestica in Korea)

  • 최인영;최영준;김진영;신현동
    • 한국균학회지
    • /
    • 제47권1호
    • /
    • pp.89-94
    • /
    • 2019
  • 중국에서 범부채의 녹병균이 Puccinia iridis로 동정됨에 따라 우리나라에서도 범부채의 녹병균을 재검토하였다. 저자들이 채집한 2점의 시료를 형태적으로 검토한 결과 모두 P. iridis의 특징과 일치하였다. 또한 유전분석한 결과 ITS 및 LSU rDNA 영역의 염기서열이 기존에 기록된 P. iridis와 각각 100% 및 99%의 상동성을 나타냈다. 이를 Neighbor-joining 분석법으로 계통수를 작성하였을 때도 P. iridis 계통군에 속하였다. 따라서 우리나라에서 범부채의 녹병균으로 P. iridis의 존재가 확인되었다. 한편, 우리나라에서 2003년에 범부채의 녹병균으로 기록된 Puccinia belamcandae에 대한 재검토는 향후 숙제로 남게 되었다.

Taxonomy of Arthrinium minutisporum sp. nov., Pezicula neosporulosa, and Acrocalymma pterocarpi: New Records from Soil in Korea

  • Das, Kallol;Lee, Seung-Yeol;Choi, Hyo-Won;Eom, Ahn-Heum;Cho, Young-Je;Jung, Hee-Young
    • Mycobiology
    • /
    • 제48권6호
    • /
    • pp.450-463
    • /
    • 2020
  • The strains 17E-042, 17E-039, and NC13-171 belong to Ascomycota and were isolated from soil collected from Sancheong-gun and Yeongam-gun, Korea. The strain 17E-042 produced white mycelial colonies that developed a sienna color with a round margin on potato dextrose agar (PDA), and the reverse side developed a light sienna color. Morphologically, this strain was similar to the strains of Arthrinium phragmites and A. hydei, but the shorter conidial size of the newly identified strain (17E-042) was distinct. The strain 17E-039 produced macroconidia that were pale yellow to orange-brown, elongated-ellipsoid to oblong, round at both ends, primarily straight but sometimes slightly curved, 0-septate, thin-walled, and filled with numerous droplets, having diameters of 20.4-34.3 × 8.0-12.0 ㎛. And the strain NC13-171 formed hyaline to light brown chlamydospores, solitary or in a chain. Multigene phylogenetic analyses were conducted using sequence data obtained from internal transcribed spacer (ITS) regions, 28S rDNA large subunit (LSU), β-tubulin (TUB2), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II large subunit (RPB2) genes. The results of molecular phylogeny, the detailed descriptions and illustrations of each species strongly support our proposal that these strains from soil in Korea be designated as Arthrinium minutisporum sp. nov. and two new records of Pezicula neosporulosa and Acrocalymma pterocarpi.