DOI QR코드

DOI QR Code

Taxonomy of Arthrinium minutisporum sp. nov., Pezicula neosporulosa, and Acrocalymma pterocarpi: New Records from Soil in Korea

  • Das, Kallol (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Lee, Seung-Yeol (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Choi, Hyo-Won (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Eom, Ahn-Heum (Department of Biology Education, Korea National University of Education) ;
  • Cho, Young-Je (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Jung, Hee-Young (College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2020.03.24
  • Accepted : 2020.09.27
  • Published : 2020.12.31

Abstract

The strains 17E-042, 17E-039, and NC13-171 belong to Ascomycota and were isolated from soil collected from Sancheong-gun and Yeongam-gun, Korea. The strain 17E-042 produced white mycelial colonies that developed a sienna color with a round margin on potato dextrose agar (PDA), and the reverse side developed a light sienna color. Morphologically, this strain was similar to the strains of Arthrinium phragmites and A. hydei, but the shorter conidial size of the newly identified strain (17E-042) was distinct. The strain 17E-039 produced macroconidia that were pale yellow to orange-brown, elongated-ellipsoid to oblong, round at both ends, primarily straight but sometimes slightly curved, 0-septate, thin-walled, and filled with numerous droplets, having diameters of 20.4-34.3 × 8.0-12.0 ㎛. And the strain NC13-171 formed hyaline to light brown chlamydospores, solitary or in a chain. Multigene phylogenetic analyses were conducted using sequence data obtained from internal transcribed spacer (ITS) regions, 28S rDNA large subunit (LSU), β-tubulin (TUB2), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II large subunit (RPB2) genes. The results of molecular phylogeny, the detailed descriptions and illustrations of each species strongly support our proposal that these strains from soil in Korea be designated as Arthrinium minutisporum sp. nov. and two new records of Pezicula neosporulosa and Acrocalymma pterocarpi.

Keywords

Acknowledgement

The authors are grateful to the Ministry of Environment (MOE) of the Republic of Korea for the research on survey data and discovery of indigenous fungal species supported by a grant from the National Institute of Biological Resources (NIBR).

References

  1. Agut M, Calvo MA. In vitro conidial germination in Arthrinium aureum and Arthrinium phaeospermum. Mycopathologia. 2004;157:363-367. https://doi.org/10.1023/B:MYCO.0000030432.08860.f3
  2. Li BJ, Liu PQ, Jiang Y, et al. First report of culm rot caused by Arthrinium phaeospermum on Phyllostachys viridis in China. Plant Dis. 2016;100:1013-1013.
  3. Pintos A, Alvarado P, Planas J, et al. Six new species of Arthrinium from Europe and notes about A. caricicola and other species found in Cwerex spp. hosts. MycoKeys. 2019;49:15-48. https://doi.org/10.3897/mycokeys.49.32115
  4. Wang M, Tan XM, Liu F, et al. Eight new Arthrinium species from China. MycoKeys. 2018;34:1-24. https://doi.org/10.3897/mycokeys.34.24221
  5. Singh SM, Yadav LS, Singh PN, et al. Arthrinium rasikravindrii sp. nov. from Svalbard, Norway. Mycotaxon. 2012;122:449-460. https://doi.org/10.5248/122.449
  6. Dai DQ, Phookamsak R, Wijayawardene NN, et al. Bambusicolous fungi. Fungal Divers. 2017;82:1-105. https://doi.org/10.1007/s13225-016-0367-8
  7. Crous PW, Groenewald JZ. A phylogenetic reevaluation of Arthrinium. IMA Fungus. 2013;4:133-154. https://doi.org/10.5598/imafungus.2013.04.01.13
  8. Ooki Y, Fujita T, Harada Y. Pezicula cinnamomea from cherry tree: pathogenicity tests and photomorphogenesis in culture. Mycoscience. 2003;44:319-326. https://doi.org/10.1007/S10267-003-0122-3
  9. Verkley GJM. A monograph of the genus Pezicula and its anamorphs. Stud Mycol. 1999;44:1-180.
  10. Yuan ZL, Verkley GJM. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe. Mycoscience. 2015;56:205-213. https://doi.org/10.1016/j.myc.2014.06.004
  11. Abeln ECA, de Pagter MA, Verkley GJM. Phylogeny of Pezicula, Dermea and Neofabraea inferred from partial sequences of the nuclear ribosomal RNA gene cluster. Mycologia. 2000;92:685-693. https://doi.org/10.2307/3761426
  12. Verkley GJM, Zijlstra JD, Summerbell RC, et al. Phylogeny and taxonomy of root-inhabiting Cryptosporiopsis species, and C. rhizophila sp. nov., a fungus inhabiting roots of several Ericaceae. Mycol Res. 2003;107:689-698. https://doi.org/10.1017/S0953756203007883
  13. Cheewangkoon R, Groenewald JZ, Verkley GJM, et al. Re-evaluation of Cryptosporiopsis eucalypti and Cryptosporiopsis-like species occurring on Eucalyptus leaves. Fungal Divers. 2010;44:89-105. https://doi.org/10.1007/s13225-010-0041-5
  14. Zhu L, Wang X, Huang F, et al. A destructive new disease of Citrus in China caused by Cryptosporiopsis citricarpa sp. nov. Plant Dis. 2012;96:804-812. https://doi.org/10.1094/PDIS-09-11-0775
  15. Alcorn JL, Irwin JAG. Acrocalymma medicaginis gen. et sp. nov. causing root and crown rot of Medicago sativa in Australia. Trans Br Mycol Soc. 1987;88:163-167. https://doi.org/10.1016/s0007-1536(87)80211-5
  16. Irwin JAG. Stagonospora root and crown rot of lucerne. Austral Plant Pathol. 1972;1:29-30. https://doi.org/10.1071/APP9720029
  17. Trakunyingcharoen T, Lombard L, Groenewald JZ, et al. Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus. 2014;5:391-414. https://doi.org/10.5598/imafungus.2014.05.02.05
  18. Shoemaker RA, Babcock CE, Irwin JAG. Massarina walkeri n. sp., the teleomorph of Acrocalymma medicaginis from Medicago sativa contrasted with Leptosphaeria pratensis, L. weimeri n. sp., and L. viridella. Can J Bot. 1991;69:569-573. https://doi.org/10.1139/b91-077
  19. Jayasiri SC, Hyde KD, Jones EBG, et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere. 2019;10:1-186. https://doi.org/10.5943/mycosphere/10/1/1
  20. Paul NC, Mun HY, Lee HW, et al. A new record of Penicillium raphiae isolated from agricultural soil of Ulleung island, Korea. Mycobiology. 2014;42:282-285. https://doi.org/10.5941/MYCO.2014.42.3.282
  21. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al., editors. PCR protocols: a guide to methods and applications. New York (NY): Academic Press; 1990. p. 315-322.
  22. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553-556. https://doi.org/10.2307/3761358
  23. O'Donnell K, Kistler HC, Cigelnik E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA. 1998;95:2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  24. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium were nonorthologous. Mol Phylogenet Evol. 1997;7:103-116. https://doi.org/10.1006/mpev.1996.0376
  25. Glass NL, Donaldson G. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  26. Liu Y, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999;16:1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  27. Ekanayaka AH, Daranagama DA, Ariyawansa HA, et al. Pezicula chiangraiensis sp. nov. from Thailand. Mycotaxon. 2016;131:739-748. https://doi.org/10.5248/131.739
  28. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-120. https://doi.org/10.1007/BF01731581
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-1874. https://doi.org/10.1093/molbev/msw054
  31. Martinez-Cano C, Grey WE, Sands DC. First report of Arthrinium arundinis causing kernel blight on barley. Plant Dis. 1992;76:1077B. https://doi.org/10.1094/PD-76-1077B
  32. Mavragani DC, Abdellatif L, McConkey B, et al. First report of damping-off of durum wheat caused by Arthrinium sacchari in the semi-arid Saskatchewan fields. Plant Dis. 2007;91:469.
  33. Ramos HP, Braun GH, Pupo MT, et al. Antimicrobial activity from endophytic fungi Arthrinium state of Apiospora montagnei Sacc. and Papulaspora immerse. Braz Arch Biol Technol. 2010;53:629-632. https://doi.org/10.1590/S1516-89132010000300017
  34. He Y, Zhang Z. Diversity of organism in the Usnea longissima lichen. Afr J Microbiol Res. 2012;6:4797-4804.
  35. Zhao YM, Deng CR, Chen X. Arthrinium phaeospermum causing dermatomycosis, a new record of China. Acta Mycol Sin. 1990;9:232-235.
  36. Hong JH, Jang S, Heo YM, et al. Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs. 2015;13:4137-4155. https://doi.org/10.3390/md13074137
  37. Shrestha P, Ibanez AB, Bauer S, et al. Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnol Biofuels. 2015;8:38. https://doi.org/10.1186/s13068-015-0221-3
  38. Gene J, Guarro J, Figueras MJ. A new species of Cryptosporiopsis causing bud rot of Corylus avellana. Mycol Res. 1990;94:309-312. https://doi.org/10.1016/s0953-7562(09)80355-9
  39. Kowalski T, Halmschlager E, Schrader K. Cryptosporiopsis melanigena sp. nov., a root-inhabiting fungus of Quercus robur and Q. petraea. Mycol Res. 1998;102:347-354. https://doi.org/10.1017/S0953756297004991
  40. Nitta H, Sato T, Kobayashi T, et al. Bull's-eye rot of Japanese pear caused by Cryptosporiopsis corticola (Edgerton) Nannfeldt. Jpn J Phytopathol. 2002;68:190.
  41. Zilla MK, Qadri M, Pathania AS, et al. Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta. Phytochemistry. 2013;95:291-297. https://doi.org/10.1016/j.phytochem.2013.06.021
  42. Chen C, Verkley GJM, Sun G, et al. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol. 2016; 120:1291-1322. https://doi.org/10.1016/j.funbio.2015.09.013
  43. Irwin JAG, Mackie JM, Marney TS, et al. Incidence of Stagonospora meliloti and Acrocalymma medicaginis in lucerne crowns and roots in eastern Australia, their comparative aggressiveness to lucerne and inheritance of reaction to S. meliloti in lucerne. Austral Plant Pathol. 2004;33:61-67. https://doi.org/10.1071/AP03083
  44. Zhang H, Hyde KD, McKenzie EHC, et al. Sequence data reveals phylogenetic affinities of Acrocalymma aquatica sp. nov., Aquasubmersa mircensis gen. et sp. nov. and Clohesyomyces aquaticus (freshwater coelomycetes). Cryptogam Mycol. 2012;33:333-346. https://doi.org/10.7872/crym.v33.iss3.2012.333
  45. Crous PW, Shivas RG, Quaedvlieg W, et al. Fungal planet description sheets: 214-280. Persoonia. 2014;32:184-306. https://doi.org/10.3767/003158514x682395
  46. Calvo A, Guarro J. Arthrinium aureum sp. nov. from Spain. Trans Br Mycol Soc. 1980;75:156-157. https://doi.org/10.1016/s0007-1536(80)80208-7

Cited by

  1. One New Species and Two New Host Records of Apiospora from Bamboo and Maize in Northern Thailand with Thirteen New Combinations vol.11, pp.10, 2021, https://doi.org/10.3390/life11101071