• 제목/요약/키워드: Molecular selectivity

검색결과 214건 처리시간 0.027초

공기 분리용 열분해 탄소막 (Pyrolytic Carbon Membranes for Air Separations)

  • Singh, Anshu;Koros, W.J.
    • 멤브레인
    • /
    • 제7권1호
    • /
    • pp.15-21
    • /
    • 1997
  • Carbon molecular sieve (CMS) membranes were synthesized by the pyrolysis of polymeric precursors. The CMS materials had oxygen-nitrogen selectivities much higher than those observed for the polymeric precursors. Typically molecular sieving materials have diffusion selectivities much higher than polymeric materials. This has been identified as a result of higher entropic selectivity of the molecular sieving materials. A study of the development of molecular sieving properties as the polymeric precursor is pyrolyzed into a CMS material will offer us an insight into polymeric molecular structures needed for enhanced entropic selectivity membrane materials.

  • PDF

Descriptor-Based Profile Analysis of Kinase Inhibitors to Predict Inhibitory Activity and to Grasp Kinase Selectivity

  • Park, Hyejin;Kim, Kyeung Kyu;Kim, ChangHoon;Shin, Jae-Min;No, Kyoung Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2680-2684
    • /
    • 2013
  • Protein kinases (PKs) are an important source of drug targets, especially in oncology. With 500 or more kinases in the human genome and only few kinase inhibitors approved, kinase inhibitor discovery is becoming more and more valuable. Because the discovery of kinase inhibitors with an increased selectivity is an important therapeutic concept, many researchers have been trying to address this issue with various methodologies. Although many attempts to predict the activity and selectivity of kinase inhibitors have been made, the issue of selectivity has not yet been resolved. Here, we studied kinase selectivity by generating predictive models and analyzing their descriptors by using kinase-profiling data. The 5-fold cross-validation accuracies for the 51 models were between 72.4% and 93.7% and the ROC values for all the 51 models were over 0.7. The phylogenetic tree based on the descriptor distance is quite different from that generated on the basis of sequence alignment.

기능화된 탄소나노튜브 멤브레인의 이온 선택성에 관한 분자동역학 연구 (Molecular Dynamics Study to Investigate Ion Selectivity of Functionalized Carbon Nanotube Membranes)

  • 석명은
    • 멤브레인
    • /
    • 제28권6호
    • /
    • pp.388-394
    • /
    • 2018
  • 탄소나노튜브(CNT) 기반의 멤브레인은 높은 물 전달률과 직경에 따른 이온 배제율로 해수담수, 물질 정화 등을 위한 분리막으로써의 가능성을 보여 주었다. 이온 선택성은 CNT 기반 멤브레인의 응용 분야를 확대하기 위한 중요한 요소이며, 기능기를 이용하여 이온 선택성의 조절이 가능함이 보고되었다. 다양한 원자가/크기의 이온이 혼합될 경우, 이온-기능기간 작용력 뿐만 아니라 이온-이온간의 작용력, 이온의 크기에 의한 반발력 등이 복합적으로 작용한다. 이에 본 연구에서는 분자동역학 전산모사를 통하여, 상이한 원자가/크기를 가진 이온의 혼합이 기능화된 CNT의 이온 선택성에 미치는 영향을 연구하였다. Potential of Mean Force 계산을 통하여 이온 투과에 대한 자유 에너지 장벽을 계산하였으며, CNT 크기 변화, 전하량 변화를 통하여 이온 선택성과 배제에 영향을 미치는 요소를 분석하였다. 본 연구는 CNT 멤브레인을 이용한 분리막 설계, 생체 이온 전달 채널 모사 등에 유용할 것으로 기대한다.

Potential of Mean Force Calculations for Ion Selectivity in a Cyclic Peptide Nanotube

  • Choi, Kyu-Min;Kwon, Chan-Ho;Kim, Hong-Lae;Hwang, Hyon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.911-916
    • /
    • 2012
  • Ion selectivity in a simple cyclic peptide nanotube, composed of four cyclo[-(D-Ala-Glu-D-Ala-Gln)$_2-$] units, is investigated by calculating the PMF profiles of $Na^+$, $K^+$, and $Cl^-$ ions permeating through the peptide nanotube in water. The final PMF profiles of the ions obtained from the umbrella sampling (US) method show an excellent agreement with those from the thermodynamic integration (TI) method. The PMF profiles of $Na^+$ and $K^+$ display free energy wells while the PMF curve of $Cl^-$ features free energy barriers, indicating the selectivity of the cyclic peptide nanotube to cations. Decomposition of the total mean force into the contribution from each component in the system is also accomplished by using the TI method. The mean force decomposition profiles of $Na^+$ and $K^+$ demonstrate that the dehydration free energy barriers by water molecules near the channel entrance and inside the channel are completely compensated for by attractive electrostatic interactions between the cations and carbonyl oxygens in the nanotube. In the case of $Cl^-$, the dehydration free energy barriers are not eliminated by an interaction between the anion and the peptide nanotube, leading to the high free energy barriers in the PMF profile. Calculations of the coordination numbers of the ions with oxygen atoms pertaining to either water molecules or carbonyl groups in the peptide nanotube reveal that the stabilization of the cations in the midplane regions of the nanotube arises from the favorable interaction of the cations with the negatively charged carbonyl oxygens.

분자동역학 전산모사에 의한 α6 nAChR Subunit의 α-conotoxin BuIA에 대한 선택성 연구 (Selectivity of the α6 nAChR Subunit on α-conotoxin BuIA Studied by Molecular Dynamics Simulations)

  • ;이명기
    • 한국수산과학회지
    • /
    • 제48권1호
    • /
    • pp.71-75
    • /
    • 2015
  • Nicotinic acetylcholine receptors (nAChRs) are essential for neurotransmission and important therapeutic targets of diseases related to neurotransmission. A recent experimental study identified three residues (Lys185, Asp187, and Ile188) of the ${\alpha}6$ nAChR subunit as determinants of ${\alpha}$-conotoxin BuIA selectivity, yet how these residues confer toxin selectivity remains unclear. In this study, we performed all-atom molecular dynamics simulations with two toxin-bound ${\alpha}4{\beta}2$ nAChR systems: the wild-type ${\alpha}4{\beta}2$ and one in which we replaced the three ${\alpha}4$ subunit residues with three ${\alpha}6$ subunit residues identified in an experimental study (Tyr185Lys, Thr187Asp, and Arg188Ile). After mutation, Asp199 lost the salt bridge formed with Arg188 in the wild type located around loop C. Then, the loop C conformation changed and became more flexible than that of the wild type. We also detected reduced space between the toxin and the binding site in the mutant simulation, resulting in increased binding affinity to the toxin. Therefore, we propose a new Asp199 mutation that breaks the salt bridge and may produce similar selectivity to that of the Arg188 mutation.

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • 제5권1호
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

Molecular Co-evolution of Gonadotropin-releasing Hormones and Their Receptors

  • Seong, Jae-Young;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.93-98
    • /
    • 2007
  • Gonadotropin-releasing hormone (GnRH), synthesized in the hypothalamus, plays a pivotal role in the regulation of vertebrate reproduction. Since molecular isoforms of GnRH and their receptors (GnRHR) have been isolated in a broad range of vertebrate species, GnRH and GnRHR provide an excellent model for understanding the molecular co-evolution of a peptide ligand-receptor pair. Vertebrate species possess multiple forms of GnRH, which have been created through evolutionary mechanisms such as gene/chromosome duplication, gene deletion and modification. Similar to GnRHs, GnRH receptors (GnRHR) have also been diversified evolutionarily. Comparative ligand-receptor interaction studies for non-mammalian and mammalian GnRHRs combined with mutational mapping studies of GnRHRs have aided the identification of domains or motifs responsible for ligand binding and receptor activation. Here we discuss the molecular basis of GnRH-GnRHR co-evolution, particularly the structure-function relationship regarding ligand selectivity and signal transduction of mammalian and non-mammalian GnRHRs.

Alteration of Ion Selectivity by Mutations within the Pore-forming Region of Small Conductance $Ca^{2+}$-activated $K^+$ Channels

  • Heun Soh;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.36-36
    • /
    • 2001
  • Small conductance $Ca^{2+}$-activated $K^{+}$ channels (or S $K_{Ca}$ channels) are a group of $K^{+}$-selective ion channels activated by sub-micromolar concentrations of intracellular $Ca^{2+}$ independent of membrane voltage. We expressed a cloned S $K_{Ca}$ channel, rSK2, in Xenopus oocytes and investigated the monovalent cation selectivity of the channels. We have used site-directed mutagenesis and macro-channel recordings to identify amino acid residues influencing the ion selectivity.(omitted)d)

  • PDF