• Title/Summary/Keyword: Molecular plasma

Search Result 701, Processing Time 0.035 seconds

Effect of Gamma-Irradiation on the Molecular Properties of Blood Plasma Proteins

  • Song, Kyung-Bin;Lee, Seunghwan;Lee, Seunghyun
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.184-187
    • /
    • 2002
  • Blood products from slaughterhouses that are not hygienically prepared for disposal or food consumption pose a human health hazard. Gamma irradiation is an effective method for sterilization of blood products, but may introduce changes in the molecular characteristics of proteins. This study evaluated the effects of irradiation on animal plasma proteins. Bovine and porcine blood was obtained from a slaughterhouse and the plasma proteins purified and lyophilized. The secondary structure and molecular weight distribution of the plasma protein solutions and powders were examined after ${\gamma}$-irradiation at 1, 5, 7 and 10 kGy. Gamma-irradiation affected the molecular properties of the protein solutions, but not the protein powders. Circular dichroism and sodium dodecyl sulfate-polyacrylamide gel electrophoresis studies showed that increased doses of ${\gamma}$-irradiation decrease the ordered structure of plasma proteins in solution, and cause initial fragmentation of the polypeptide chains and subsequent aggregation.

Damage-Free Treatment of ITO Films using Nitrogen-Oxygen (N2-O2) Molecular DC Plasma

  • Kim, Hong Tak;Nguyen, Thao Phoung Ngoc;Park, Chinho
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.112-115
    • /
    • 2015
  • In this study, the surface of ITO films was modified using $N_2-O_2$ molecular plasma, and the effects of oxygen concentration in the plasma on the ITO surface properties were investigated. Upon plasma treatment of ITO films, the surface roughness of ITO films seldom changed up to the oxygen concentration in the range of 0% to 40%, while the roughness of the films slightly changed at or above the oxygen concentration of 60%. The contact angle of water droplet on ITO films dramatically changed with varying oxygen concentration in the plasma, and the minimum value was found to be at the oxygen concentration of 20%. The plasma resistance at this condition exhibited a maximum value, and the change of resistance showed an inverse relationship compared to that of contact angle. From these results, it was conjectured that the chemical reactions in the sheath of the molecular plasma dominated more than the physical actions due to energetic ion bombardment, and also the plasma resistance could be used as an indirect indicator to qualitatively diagnosis the state of plasma during the plasma treatment.

Effects of DBD-bio-plasma on the HSP70 of Fibroblasts: A New Approach on Change of Molecular Level by Heat Shock in the Cell (Fibroblasts 세포주의 HSP70에 대한 DBD-bio-plasma의 effects: Cell에서 Heat Shock에 의한 Molecular Level 변화로의 새로운 접근법)

  • Kim, Kyoung-Yeon;Yi, Junyeong;Nam, Min-Kyung;Choi, Eun Ha;Rhim, Hyangshuk
    • KSBB Journal
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • Plasma is an ionized gas mixture, consisting of neutral particles, positive ions, negative electrons, electronically excited atoms and molecules, radicals, UV photons, and various reactive species. Also, plasma has unique physical properties distinct from gases, liquids, and solids. Until now, non-thermal plasmas have been widely utilized in bio-medical applications (called bio-plasma) and have been developed for the plasma-related devices that are used in the medical field. Although numerous bio-plasma studies have been performed in biomedicine, there is no confirmation of the nonthermal effect induced by bio-plasma. Standardization of the biological application of plasma has not been evaluated at the molecular level in living cells. In this context, we investigated the biological effect of bio-plasma on living cells. Hence, we treated the fibroblasts with Dielectric Bauvier Discharge bio-plasma (DBD), and assessed the characteristic change at the molecular level, one of the typical cellular responses. Heat shock protein 70 (HSP70) regulates its own protein level in response to stimuli. HSP70 responds to heat shock by increasing its own expression at the molecular level in cells. Hence, we confirmed the level of HSP70 after treatment of mouse embryonic fibroblasts (MEFs) with DBD. Interestingly, DBD-plasma induced cell death, but there was no difference in the level of HSP70, which is induced by heat shock stimuli, in DBD-treated MEFs. Our data provide the basic information on the interaction between MEFs and DBD, and can help to design a molecular approach in this field.

Cellular and Molecular Responses of a Filamentous Fungus Neurospora Crassa to Non-thermal Plasma at Atmospheric Pressure

  • Park, Gyung-Soon;Ryu, Young-Hyo;Hong, Young-June;Uhm, Han-Sup;Choi, Eun-H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.476-476
    • /
    • 2012
  • Although plasma is an efficient means of microbial sterilization, mechanism of plasma effect on microorganisms still needs to be clarified. In addition, a limited number of studies are available on eukaryotic microorganisms such as yeast and fungi in relation to plasma application. Thus, we investigated cellular and molecular aspects of plasma effects on a filamentous fungus, Neurospora crassa by making use of argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

  • PDF

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF

Atomic and Molecular Data Research for Plasma Applications

  • Yun, Jeong-Sik;Gwon, Deuk-Cheol;Song, Mi-Yeong;Jang, Won-Seok;Hwang, Seong-Ha;Park, Jun-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.32-32
    • /
    • 2010
  • Since the characteristics of plasmas depend strongly on the interactions between plasma particles such as electron, ions, and neutrals, a well-established atomic and molecular database is needed to understand and produce various types of plasma. Thus, National Fusion Research Institute (NFRI) started to establish the plasma property DB for fusion and industrial plasma from last 2002. Here we describe our recent data evaluation activities regarding to production of atomic and molecular data that are needed for modeling plasma in fusion tokamaks and also low temperature industrial plasmas.

  • PDF

Deciphering the molecular mechanisms underlying the plasma membrane targeting of PRMT8

  • Park, Sang-Won;Jun, Yong-Woo;Choi, Ha-Eun;Lee, Jin-A;Jang, Deok-Jin
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.601-606
    • /
    • 2019
  • Arginine methylation plays crucial roles in many cellular functions including signal transduction, RNA transcription, and regulation of gene expression. Protein arginine methyltransferase 8 (PRMT8), a unique brain-specific protein, is localized to the plasma membrane. However, the detailed molecular mechanisms underlying PRMT8 plasma membrane targeting remain unclear. Here, we demonstrate that the N-terminal 20 amino acids of PRMT8 are sufficient for plasma membrane localization and that oligomerization enhances membrane localization. The basic amino acids, combined with myristoylation within the N-terminal 20 amino acids of PRMT8, are critical for plasma membrane targeting. We also found that substituting Gly-2 with Ala [PRMT8(G2A)] or Cys-9 with Ser [PRMT8(C9S)] induces the formation of punctate structures in the cytosol or patch-like plasma membrane localization, respectively. Impairment of PRMT8 oligomerization/dimerization by C-terminal deletion induces PRMT8 mis-localization to the mitochondria, prevents the formation of punctate structures by PRMT8(G2A), and inhibits PRMT8(C9S) patch-like plasma membrane localization. Overall, these results suggest that oligomerization/dimerization plays several roles in inducing the efficient and specific plasma membrane localization of PRMT8.

Plasma Post-operative miR-21 Expression in the Prognosis of Gastric Cancers

  • Ma, Guo-Jian;Gu, Rong-Min;Zhu, Ming;Wen, Xu;Li, Jin-Tian;Zhang, Yuan-Ying;Zhang, Xiao-Mei;Chen, Sen-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7551-7554
    • /
    • 2013
  • Tumor-associated microRNAs have been detected in serum or plasma, but whether plasma microRNA-21 (miR-21) could be a potential circulating biomarker for gastric cancer (GC) prognosis in Chinese is still uncertain. Real-time quantitative reverse transcription PCR (qRT-PCR) was employed in this study to compare the relative expression of miR-21 between pre-operative and post-operative paired plasmas from 42 patients with primary GCs. The results showed that the expression levels of miR-21 in the post-operative plasmas were significantly reduced by an average of 18.2 times in all patients when compared to the pre-operative plasmas, and by 22.1 times in the subgroup of patients without family history, while only 1.76 times in the subgroup of patients with a family history. With respect of clinicopathological characteristics, the plasma miR-21 expression was highly associated with differentiation degree and lymph node metastasis rate. The results suggested plasma miR-21 could be a novel potential biomarker for GC prognosis and evaluation of surgery outcomes, especially in patients without a family history.

A study on the E-beam resist characteristics of plasma polymerized styrene (플라즈마중합 스티렌 박막의 e-beam 레지스트 특성에 관한 연구)

  • 이덕출;박종관
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.425-429
    • /
    • 1994
  • In this paper, we study on the plasma polymerized styrene as a negative electron-beam resist. Plasma polymerized thin film was prepared using an interelectrode inductively coupled gas-flow type reactor. We show that polymerization parameters of thin film affect sensitivity and etching resistance of the resist. Molecular weight distribution of plasma polymerized styrene is 1.41-3.93, and deposition rates of that are 32-383[.angs./min] with discharge power. Swelling and etching resistance becomes . more improved with increasing discharge power during plasma polymerization. Etch rate by RIE is higher than that by plasma etching.

  • PDF

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.