• Title/Summary/Keyword: Molecular medicine

Search Result 6,762, Processing Time 0.043 seconds

The Effect of Translationally Controlled Tumor Protein (TCTP) of the Arctic Copepod Calanus glacialis on Protecting Escherichia coli Cells against Oxidative Stress (북극 동물플랑크톤 Calanus glacialis TCTP (Translationally Controlled Tumor Protein)가 산화적 스트레스 상태에서 E. coli 세포의 저항성에 미치는 효과)

  • Park, Yu Kyung;Lee, Chang-Eun;Lee, Hyoungseok;Koh, Hye Yeon;Kim, Sojin;Lee, Sung Gu;Kim, Jung Eun;Yim, Joung Han;Hong, Ju-Mi;Kim, Ryeo-Ok;Han, Se Jong;Kim, Il-Chan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.931-938
    • /
    • 2020
  • Translationally controlled tumor protein (TCTP) is one of the most abundant proteins in various eukaryotic organisms. TCTPs play important roles in cell physiological processes in cancer, cell proliferation, gene regulation, and heat shock response. TCTP is also considered an important factor in the resistance to oxidative stress induced by dithiothreitol or hydrogen peroxide (H2O2). Arctic calanoid copepods have a variety of antioxidant defense systems to regulate the levels of potentially harmful reactive oxygen species generated by ultraviolet radiation in the Arctic marine ecosystem. However, information on the antioxidant activity of TCTP in the Arctic Calanus glacialis is still scarce. To understand the putative antioxidant function of the Arctic copepod C. glacialis TCTP (Cg-TCTP), its gene was cloned and sequenced. The Cg-TCTP comprised 522 bp and encoded a 174-amino acid putative protein with a calculated molecular weight of ~23 kDa. The recombinant Cg-TCTP (Cg-r TCTP) gene was overexpressed in Escherichia coli (BL21), and Cg-rTCTP-transformed cells were grown in the presence or absence of H2O2. Cg-rTCTP-transformed E. coli showed increased tolerance to high H2O2 concentrations. Therefore, TCTP may be an important antioxidant protein related to tolerance of the Arctic copepod C. glacialis to oxidative stress in the harsh environment of the Arctic Ocean.

Anti-aging Effects of the Extracts from Leaf. Stem, Fruit and Seed of Yew (Taxus cuspidata Sieb) by Solvent Extraction Method (용매추출법에 의한 주목의 잎, 줄기, 과실 추출물의 항 노화 효과)

  • Kim, In-Young;Jung, Sung-Won;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.211-219
    • /
    • 2004
  • Yew (Taxus cuspidata Sieb.) chose that grow as medicine, food, decorative plant in Korea's Kyong-Gi province surroundings. Extracts of yew extracted leaf of 250g and stems of 300g with 1,3-butylene glycol (l,3-BG), propylene glycol (PG) and water. As results, external appearance of leaf extract of yew was slightly brown clear extract. The pH was 5.3${\pm}$0.5, and specific gravity was 1.012${\pm}$0.05, and refractive index was l.375${\pm}$0.05. Also, appearance of stem's extract was slightly brown clear extract, and the pH was 5.4${\pm}$0.5, and specific gravity was 1.016${\pm}$0.05, and refractive index was 1.358${\pm}$0.05. Oil of yew separated from seeds, and extracted polysaccharide high purity from fruits. As a result, specific gravity of oil was 0.987, and obtained 40.0% of yield. Total polyphenols amount of yew extract is detected 0.563% in leaves, 0.325% in stems, whereas total tannins amount contained 0.054% and 0.037% each in leaves and stems. As effect in cosmetics, the anti-oxidative effect by DPPH method is 75.0% in leaves, and stems was 64.0%. Collagen synthesis rate was shown high activity by 54.16% in stem's extract, 33.18% in leaves' extract. Also, PPE-inhibitory activities were 13.7% and 23.5% each in leaves and stems. Anti-inflammatory effect of yew seed oil displayed superior effect of 41% than control. Polysaccharide's molecular weight that is gotten from fruits was 5${\times}$10$^4$-3${\times}$10$\^$5/ dalton, and got 20.0${\pm}$5% of yield.

Expressional Analysis of Two Genes (Got1 andMat1) Up-regulated by Starvation Stress (영양고갈-스트레스에 의해서 상승 발현하는 유전자(Got1과 Mat1)의 분석)

  • Park, Junseok;Kwon, Young-Sook;Lee, Eunryoung;Kwon, Kisang
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.686-693
    • /
    • 2014
  • Restricted supply of nutrients may affect genes at the molecular level as well as physiological functions. Understanding the cellular responses during starvation is necessary for developing strategies to reduce damage caused by starvation stress. After 1 h of starvation, Got1 gene expression was increased but its expression returned to the normal state after 24 h. Mat1 gene expression continuously increased with starvation from 1 h until 24 hr. Rats starved for 1-3 days showed significant changes in expression of the Got1 and Mat1 genes, which were significantly reduced in the cerebral cortex and cerebellum. In the lung, gene expression was increased by starvation for 1-2 days but decreased on the third day. No differences were observed in gene expression in the heart. Strong Got1 lung gene expression was seen in the starvation group one day after restoration of the food supply. Muscle mass was significantly reduced at the start of starvation and remained the same after two days of starvation and one day after the food supply was restored. The Mat1 gene expression did not change. The Got1 was induced by NaCl and showed strong expression in the lung and the thymus, but the apparent decrease of the remaining changes were not observed in male rats. The Mat1 gene was not as sensitive as the Got1 gene to induction by NaCl. However, differences in gene induction by NaCl were evident between males and females, indicating that diet control of gene expression is associated with hormones.

Trial for Drug Susceptibility Testing of Mycobacterium tuberculosis with Live and Dead Cell Differentiation (세포 염색 방법을 이용한 결핵균 감수성 검사법)

  • Ryu, Sung-Weon;Kim, Hyun-Ho;Bang, Mun-Nam;Park, Young-Kil;Park, Sue-Nie;Shim, Young-Soo;Kang, Seongman;Bai, Gill-Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.3
    • /
    • pp.261-268
    • /
    • 2004
  • Background : The resurgence of tuberculosis and outbreaks of multidrug resistant (MDR) tuberculosis have increased the emphasis for the development of new susceptibility testing of the Mycobacterium tuberculosis for the effective treatment and control of the disease. Conventional drug susceptibility testings, such as those using egg-based or agar-based media have some limits, such as the time required and difficulties in determining critical inhibitory concentrations, but these are still being used in many diagnostic laboratories because of no better lternatives, considering cost and accuracy. To overcome these limits, a rapid and simple method for new susceptibility testing, using live and dead assays, was applied for a bacterial cell viability assay to distinguish dead from live bacterial cells based on two-color fluorescence. Materials and Methods Strains : Forty strains were used in this study, 20 susceptible to all antituberculosis drugs and the other 20 resistant to the four first line antituberculosis drugs isoniazid, rifampicin, streptomycin and ethambutol. Antibiotics : The four antibiotics were dissolved in 7H9 broth to make the following solutions: $0.1{\mu}g\;isoniazid(INH)/m{\ell}$, $0.4{\mu}g\;rifampicin(RMP)/m{\ell}$, $4.0{\mu}g\;streptomycin(SM)/m{\ell}$ and $4.0{\mu}g\;ethambutol(EMB)/m{\ell}$. Results : Live and dead Mycobacterium tuberculosis cells fluoresced green and red with the acridin (Syto 9) and propidium treatments, respectively. These results are very well accorded with conventional drug susceptibility testing by proportional method on Lowensen-Jensen media (L-J) containing 4 drugs (INH, RMP, EMB and SM), showing a 93.7 % accordance rate in susceptible strains and 95% in resistant strains. Conclusion : The results of the drug susceptibility testing using the live and dead bacterial cell assay showed high accordance rates compared with the conventional proportion method on L-J. This finding suggests that the live and dead bacterial cell assay can be used as an alternative to conventional drug susceptibility testing for M. tuberculosis strains.

Anti-oxidative and Anti-cancer Activities by Cell Cycle Regulation of Salsola collina Extract (솔장다리 추출물의 항산화 활성 및 세포주기조절에 의한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Park, Hyun-Jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • Salsola collina, also known as Russian thistle, is widely distributed in and around waste facilities, roadsides, and drought and semi-drought areas, and is used as a traditional folk remedy in Chinese medicine for the treatment of hypertension. In this study, we have evaluated the anti-oxidative and anti-cancer activities of the ethanol extract of S. collina Pall. (EESC), and the molecular mechanisms of its anti-cancer effects on human colon carcinoma HT29 cells. EESC exhibited anti-oxidative activity through DPPH radical scavenging capacity and showed cytotoxic activity in a dose-dependent manner in HT29 cells. After EESC treatment, HT29 cells altered their morphology, becoming smaller and irregular in shape. EESC also induced cell accumulation in the G2/M phase in a dose-dependent manner, accompanied by a decrease of cell population in the G1 phase. The G2/M arrest by EESC was associated with the increased expression of cyclin-dependent kinase (CDK) inhibitor p21 and Wee1 kinase, which phosphorylates, or inactivates, Cdc2. EESC treatment induced the phosphorylation of Cdc2 and Cdc25C, and inhibited cyclin A and Cdc25C protein expression. In addition, S arrest was induced by the highest concentration of EESC treatment, associated with a decrease of cyclin A and Cdk2 expression. These findings suggest that EESC may possess remarkable anti-oxidative activity and exert an anti-cancer effect in HT29 cells by cell cycle regulation.

Development of Efficient Screening Methods for Melon Plants Resistant to Fusarium oxysporum f. sp. melonis (멜론 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Lee, Won Jeong;Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.70-82
    • /
    • 2015
  • This study was conducted to establish an efficient screening system to identify melon resistant to Fusarium oxysporum f. sp. melonis. F. oyxsporum f. sp. melonis GR was isolated from infected melon plants collected at Goryeong and identified as F. oxysporum f. sp. melonis based on morphological characteristics, molecular analyses, and host-specificity tests on cucurbits including melon, oriental melon, cucumber, and watermelon. In addition, the GR isolate was determined as race 1 based on resistance responses of melon differentials to the fungus. To select optimized medium for mass production of inoculum of F. oxysporum f. sp. melonis GR, six media were tested. The fungus produced the most spores (microconidia) in V8-juice broth. Resistance degrees to the GR isolate of 22 commercial melon cultivars and 6 rootstocks for melon plants were investigated. All tested rootstocks showed no symptoms of Fusarium wilt. Among the tested melon cultivars, only three cultivars were susceptible and the other cultivars displayed moderate to high resistance to the GR isolate. For further study, six melon cultivars (Redqueen, Summercool, Superseji, Asiapapaya, Eolukpapaya, and Asiahwanggeum) showing different degrees of resistance to the fungus were selected. The development of Fusarium wilt on the cultivars was tested according to several conditions such as plant growth stage, root wounding, dipping period of roots in spore suspension, inoculum concentration, and incubation temperature to develop the disease. On the basis of the test results, we suggest that an efficient screening method for melon plants resistant to F. oxysporum f. sp. melonis is to remove soil from roots of seven-day-old melon seedlings, to dip the seedlings without cutting in s pore s uspension of $3{\times}10^5conidia/mL$ for 30 min, to transplant the inoculated seedlings to plastic pots with horticulture nursery media, and then to cultivate the plants in a growth room at 25 to $28^{\circ}C$ for about 3 weeks with 12-hour light per day.

Antioxidant and antiobesity activities of oral treatment with ethanol extract from sprout of evening primrose (Oenothera laciniata) in high fat diet-induced obese mice (달맞이순 (Oenothera laciniata) 에탄올 추출물 섭취가 고지방식이로 유도한 비만 마우스에서 항산화 및 비만억제효과)

  • Kwak, Chung Shil;Kim, Mi-Ju;Kim, Sun Gi;Park, Sunyeong;Kim, In Gyu;Kang, Heun Soo
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.529-539
    • /
    • 2019
  • Purpose: Sprouts of evening primrose (Oenothera laciniata, OL) were reported to have high contents of flavonoids and potent antioxidant activity. This study examined the antioxidant and antiobesity activities of OL sprouts to determine if they could be a natural health-beneficial resource preventing obesity and oxidative stress. Methods: OL sprouts were extracted with 50% ethanol, evaporated, and lyophilized (OLE). The in vitro antioxidant activity of OLE was examined using four different tests. The antiobesity activity and in vivo antioxidant activity from OLE consumption were examined using high fat diet-induced obese (DIO) C57BL/6 mice. Results: The IC50 for the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging and superoxide dismutase (SOD)-like activities of OLE were 26.2 ㎍/mL and 327.6 ㎍/mL, respectively. OLE exhibited the ferric reducing antioxidant power (FRAP) activity of 56.7 ㎍ ascorbic acid eq./mL at 100 ㎍/mL, and an increased glutathione level by 65.1% at 200 ㎍/mL compared to the control in the hUC-MSC stem cells. In an animal study, oral treatment with 50 mg or 100 mg of OLE/kg body weight for 14 weeks reduced the body weight gain, visceral fat content, fat cell size, blood leptin, and triglyceride levels, as well as the atherogenic index compared to the high fat diet control group (HFC) (p < 0.05). The blood malondialdehyde (MDA) level and the catalase and SOD-1 activities in adipose tissue were reduced significantly by the OLE treatment compared to HFC as well (p < 0.05). In epididymal adipose tissue, the OLE treatment reduced the mRNA expression of leptin, PPAR-γ and FAS significantly (p < 0.05) compared to HFC while it increased adiponectin expression (p < 0.05). Conclusion: OLE consumption has potent antioxidant and antiobesity activities via the suppression of oxidative stress and lipogenesis in DIO mice. Therefore, OLE could be a good candidate as a natural resource to develop functional food products that prevent obesity and oxidative stress.

Synthesis of Ultrasound Contrast Agent: Characteristics and Size Distribution Analysis (초음파 조영제의 합성 및 합성된 초음파 조영제의 특성 분석)

  • Lee, Hak Jong;Yoon, Tae Jong;Yoon, Young Il
    • Ultrasonography
    • /
    • v.32 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • Purpose: The purpose of this study is to establish the methodology regarding synthesis of ultrasound contrast agent imaging, and to evaluate the characteristics of the synthesized ultrasound contrast agents, including size or degradation interval and image quality. Materials and Methods: The ultrasound contrast agent, composed of liposome and SF6, was synthesized from the mixture solution of $21{\mu}mol$ DPPC (1, 2-Dihexadecanoyl-sn-glycero-3-phosphocholine, $C_{40}H_{80}NO_8P$), $9{\mu}mol$ cholesterol, $1.9{\mu}mol$ of DCP (Dihexadecylphosphate, $[CH_3(CH_2)_{15}O]_2P(O)OH$), and chloroform. After evaporation in a warm water bath and drying during a period of 12-24 hours, the contrast agent was synthesized by the sonication process by addition of buffer and SF6 gas. The size of the contrast agent was controlled by use of either extruder or sonication methods. After synthesis of contrast agents, analysis of the size distribution of the bubbles was performed using dynamic light scattering measurement methods. The degradation curve was also evaluated by changes in the number of contrast agents via light microscopy immediate, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, and 84 hours after synthesis. For evaluation of the role as an US contrast agent, the echogenicity of the synthesized microbubble was compared with commercially available microbubbles (SonoVue, Bracco, Milan, Italy) using a clinical ultrasound machine and phantom. Results: The contrast agents were synthesized successfully using an evaporation-drying-sonication method. The majority of bubbles showed a mean size of 154.2 nanometers, and they showed marked degradation 24 hours after synthesis. ANOVA test revealed a significant difference among SonoVue, synthesized contrast agent, and saline (p < 0.001). Although no significant difference was observed between SonoVue and the synthesized contrast agent, difference in echogenicity was observed between synthesized contrast agent and saline (p < 0.01). Conclusion: We could synthesize ultrasound contrast agents using an evaporation-drying-sonication method. On the basis of these results, many prospective types of research, such as anticancer drug delivery, gene delivery, including siRNA or microRNA, targeted molecular imaging, and targeted therapy can be performed.

Effects and Molecular Mechanisms of Eupatorium chinensis var. simplicifolium Extract on Abnormal Proliferation of Vascular Smooth Muscle Cells (등골나물추출물의 혈관 평활근 세포의 비정상 증식에 대한 억제 효과 및 분자기작)

  • Kim, Min-Jeong;Kim, Jihee;Lee, Jin-Ho;Kim, Minah;Woo, Keunjung;Kim, Han Sung;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.787-795
    • /
    • 2021
  • Eupatorium chinensis var. simplicifolium (EUC) has anti-inflammatory and antioxidant effects. Young sprouts of EUC have been used as food for a long time, and the whole EUC plant has been used as an herbal remedy in oriental medicine. Arteriosclerosis, or chronic inflammation in arterial vessels, is a cardiovascular disease and is involved in various disorders. Cardiovascular diseases such as restenosis and neuropathic hyperplasia are mainly caused by abnormal growth and movement due to multiple growth factors in vascular smooth muscle cells (VSMCs). Platelet-derived growth factor (PDGF) is a mitogen released from damaged vessel walls and is involved in the proliferation and migration of VSMCs. To determine the effects of EUC on the abnormal proliferation and migration of VSMCs, the present study investigated intracellular signaling pathways in PDGF-BB-induced VSMCs treated with and without EUC. Pretreating PDGF-BB-induced VSMCs with EUC tended to effectively decrease cell proliferation and migration. Subsequently, the intracellular growth-related signaling pathways of AKT, phospholipase C gamma (PLC-γ), and mitogen-activated protein kinase (MAPK) were investigated using western blotting to confirm inhibited phosphorylation. Furthermore, flow cytometry data showed that EUC blocked the cell cycle of VSMCs. These results suggest that EUC can inhibit the proliferation and migration of VSMCs by controlling the cell cycle and growth factor receptors. Furthermore, this indicates that EUC can be used as a preventative against cardiovascular disease resulting from abnormal proliferation and migration of VSMCs.

Single Dose Oral Toxicity Test of Water Extract of Corni Fructus in ICR Mice (ICR 마우스를 이용한 산수유 건피 추출물의 단회 경구투여 독성시험)

  • Hwang-Bo, Hyun;Kwon, Da Hye;Kim, Min Young;Ji, Seon Yeong;Choi, Eun Ok;Kim, Sung Ok;Jeong, Ji-Suk;Hong, Su Hyun;Choi, Sung Hyun;Park, Cheol;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.112-117
    • /
    • 2019
  • Herbal medicines are widely used as therapeutic products in many countries. Corni fructus (CF), the dried ripe sarcocarp of Cornus officinalis Sieb. et Zucc (Cornaceae), has been used for thousands of years in traditional medicine and has been reported to be effective for the prevention and treatment of various diseases, such as kidney diseases and diabetes. Recent research on CF has documented a wide spectrum of therapeutic properties, which include anti-inflammatory, ant-oxidative, immunomodulatory, and anti-cancer effects. However, there is no information on its safety. Therefore, in this study, the toxicity of water extract of CF to ICR mice was investigated. The mice received a single dose of water extract of CF (1,000, 2,000, and 5,000 mg/kg of body weight) via the oral route. Mortality, clinical signs, body weight changes, gross findings, and weights of the principal organs after 14 d were then assessed. The results revealed no adverse effects of CF as determined by clinical signs, body weights, or organ weights and no gross pathological findings in any of the treatment groups. These results suggest that the 50% lethal dose and approximated lethal dose of CF extract is over 5,000 mg/kg. The findings provide scientific evidence for the safety of CFs.