• Title/Summary/Keyword: Molecular medicine

Search Result 6,762, Processing Time 0.033 seconds

Development of Drugs and Technology for Radiation Theragnosis

  • Jeong, Hwan-Jeong;Lee, Byung Chul;Ahn, Byeong-Cheol;Kang, Keon Wook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.597-607
    • /
    • 2016
  • Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

Substituent Effect on the Structure and Biological Property of 99mTc-Labeled Diphosphonates: Theoretical Studies

  • Qiu, Ling;Lin, Jian-Guo;Gong, Xue-Dong;Cheng, Wen;Luo, Shi-Neng
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4084-4092
    • /
    • 2012
  • Theoretical calculations based on density functional theory (DFT) were performed to study the substituent effect on the geometric and electronic structures as well as the biological behavior of technetium-99m-labeled diphosphonate complexes. Optimized structures of these complexes are surrounded by six ligands in an octahedral environment with three unpaired 4d electrons ($d^3$ state) and the optimized geometry of $^{99m}Tc$-MDP agrees with experimental data. With the increase of electron-donating substituent or tether between phosphate groups, the energy gap between frontier orbitals increases and the probability of non-radiative deactivation via d-d electron transfer decreases. The charge distribution reflects a significant ligand-to-metal electron donation. Based on the calculated geometric and electronic structures and biologic properties of $^{99m}Tc$-diphosphonate complexes, several structure-activity relationships (SARs) were established. These results may be instructive for the design and synthesis of novel $^{99m}Tc$-diphosphonate bone imaging agent and other $^{99m}Tc$-based radiopharmaceuticals.

Stomach clusterin as a gut-derived feeding regulator

  • Cherl NamKoong;Bohye Kim;Ji Hee Yu;Byung Soo Youn;Hanbin Kim;Evonne Kim;So Young Gil;Gil Myoung Kang;Chan Hee Lee;Young-Bum Kim;Kyeong-Han Park;Min-Seon Kim;Obin Kwon
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.149-154
    • /
    • 2024
  • The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis.

Herbal Remedies for Combating Irradiation: a Green Anti-irradiation Approach

  • Lachumy, Subramanion Jothy;Oon, Chern Ein;Deivanai, Subramanian;Saravanan, Dharmaraj;Vijayarathna, Soundararajan;Choong, Yee Siew;Yeng, Chen;Latha, Lachimanan Yoga;Sasidharan, Sreenivasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5553-5565
    • /
    • 2013
  • Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green anti-irradiation approach for the betterment of human beings without high cost, side effects and toxicity.

Experimental Murine Fascioliasis Derives Early Immune Suppression with Increased Levels of TGF-${\beta}$ and IL-4

  • Chung, Joon-Yong;Bae, Young-An;Yun, Doo-Hee;Yang, Hyun-Jong;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.4
    • /
    • pp.301-308
    • /
    • 2012
  • In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of $CD19^+$ B cells was observed as early as week 1 post-infection while $CD4^+/CD8^+$ T cells were down-regulated. Accumulation of $Mac1^+$ cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-${\alpha}$ mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-$1{\beta}$ expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-${\beta}$ were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-${\beta}$ and IL-4 during the early stages of infection.

Synthesis of oleyl-4[131I]-iodobenzoate for long-term cell trafficking

  • Jeon, Hak Rim;Lee, Woonghee;Oh, Jieun;Lee, Yong Jin;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 2018
  • Great efforts are currently devoted to the development of new approaches for the labeling of cells using appropriate radionuclides. While fluoride-18 and copper-64 have been extensively studied as short-term and intermediate-term trafficking agents, iodide was studied less intensely. Here, we report a new cell labeling agent labeled with $^{131}I$, $[^{131}I]$oleyl-4-iodobenzoate ($[^{131}I]$OIB) for long-term cell trafficking. A precursor of $[^{131}I]$OIB was obtained in two steps, with the yield of 35%. The radiochemical yield of $[^{131}I]$OIB was over 50%. While $[^{131}I]$OIB could label different cells, L6 cells showed the highest cell-labeling efficiency. The $[^{131}I]$OIB-labeled L6 cells were imprinted into a rat heart, and then monitored noninvasively for 2 weeks by gamma camera imaging. We conclude that $[^{131}I]$OIB is a good candidate molecule for a long-term cell trafficking agent.

Recent progress of enzyme cleavable linker in antibody-drug conjugates: sulfatase and phosphatase

  • Sushil K. Dwivedi;Abhinav Bhise;Rajkumar Subramani;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Recently, antibody-drug conjugates (ADCs) are used to deliver efficient cytotoxic payloads selectively in cancer cells. In the designing of an ADC, the antibody is connected to a toxic payload via a covalent linker, which helps to solubilizes the typical hydrophobic payload as well as stabilizes the linkage over circulation. The development of the linkers for the antibody drug conjugate is still in demand. Initially, the acid, disulfide, and cathepsin-sensitive ADCs attracted considerable attention for the delivery of a potent cytotoxic payload but suffer from instability in human and mouse plasma with a short half-life. In addition, It also suffer from a solubility issue that induces aggregation, which is the major problem in their development. ADCs associated with sulfatase and phosphatase cleavable linker are highly soluble due to the anionic nature of sulfate and phosphate groups. The ADCs also showed high stability in human and mouse plasma. Therefore, to overcome these limitations, sulfatase and phosphatase cleavable linkers were developed. This review focuses on the recently reported advantages of sulfatase and phosphatase cleavable linkers for ADCs.

Selective tyrosine conjugation with a newly synthesized PCB -TE2A-luminol bifunctional chelator

  • Subramani Rajkumar;Hyun Park;Abhinav Bhise;Seong Hwan Cho;Jung Young Kim;Kyo Chul Lee;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.85-91
    • /
    • 2021
  • Selective amino acid conjugation of bulky antibodies is a valuable asset for real-time diagnosis and therapy. However, selective conjugation incorporating a chelate-bearing radioactive atom into an antibody without affecting its immunoreactivity is a challenging task. A bifunctional chelator (BFC), a selective amino acid-targeting probe, and a linker have been developed to overcome this problem. Here, we report the synthesis of a novel propylene cross-bridged chelator (PCB)-1,8-N,N'-bis-(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane (TE2A)-luminol BFC via a click reaction and radiolabel it with a 64Cu ion for tyrosine-selective conjugation of trastuzumab. In the initial optimization study, we tried different oxidative addition conditions such as electro-oxidation, hemin, horseradish peroxidase, iodogen tube, chloramine-T, and iodo beads. In this study, up to 82% of 64Cu-PCB-TE2A-luminol was conjugated with the antibody in an iodo bead-catalyzed oxidative addition reaction with an isolated yield of 24.4%.

Investigation of ICAM-1 and β3 Integrin Gene Variations in Patients with Brain Tumors

  • Yilmaz, Umit;Zeybek, Umit;Kahraman, Ozlem Timirci;Kafadar, Ali Metin;Toptas, Bahar;Yamak, Nesibe;Celik, Faruk;Yaylim, Ilhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5929-5934
    • /
    • 2013
  • Background: Primary brain tumors constitute a small percent of all malignant cancers, but their etiology remains poorly understood. ${\beta}3$ integrin (ITGB3) has been recognized to play influential roles in angiogenesis, tumor growth and metastasis. Intercellular adhesion molecule-1 (ICAM-1) is a surface glycoprotein important for tumor invasion and angiogenesis. The aim of this study was to investigate whether specific genetic polymorphisms of ICAM-1 and ITGB3 could be associated with brain cancer development and progression in a Turkish population. Our study is the first to our knowledge to investigate the relationship between brain tumor risk and ICAM-1 and ${\beta}3$ integrin gene polymorphisms. Materials and Methods: The study covered 92 patients with primary brain tumors and 92 age-matched healthy control subjects. Evaluation of ${\beta}3$ integrin (Leu33Pro (rs5918)) and ICAM-1 (R241G (rs1799969) and K469E (rs5498)) gene polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: According to results of our research, the A allele of the ICAM-1 R241G gene polymorphism appeared to be a risk factor for primary brain tumors (p<0.001). Similarly, the frequency of the A mutant allele of ICAM-1 R241G was statistically significant in patients with brain tumors classified as glioma (p<0.001). When allele and genotype distributions of ICAM-1 K469E, ICAM-1 R241G and ${\beta}3$ integrin Leu33Pro gene polymorphisms were evaluated with age, sex, and smoking, there were no statistically significant differences. Haplotype analysis revealed that the frequencies of GAC (rs1799969-rs5498-rs5918) and GAT (rs1799969-rs5498-rs5918) haplotypes were significantly lower in patients as compared with controls (p=0.001; p=0.036 respectively). Conclusions: This study provides the first evidence that ICAM-1 R241G SNP significantly contributes to the risk of primary brain tumors in a Turkish population. In addition, our results suggest that ICAM-1 R241G in combination ICAM-1 K469E may have protective effects against the development of brain cancer.