• 제목/요약/키워드: Molecular dynamic

검색결과 488건 처리시간 0.023초

나노 세공을 통한 비드 체인의 전기영동에 관한 수치해석적 연구 (NUMERICAL STUDY ON ELECTROPHORETIC MOTION OF A BIO-POLYMER THROUGH A NANO-PORE)

  • 알라파티 수레수;서용권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.575-580
    • /
    • 2010
  • In this work, the electrophoretic motion of dsDNA molecule represented by a polymer through an artificial nano-pore in a membrane is simulated using the numerical method combining the lattice Boltzmann and Langevin molecular dynamic method. The polymer motion is represented by Langevin molecular dynamics technique while the fluid flow is taken into account by fluctuating lattice-Boltzmann method. The hydrodynamic interactions between the polymer and solvent in a confined space with a membrane having a hole are considered explicitly through the frictional and the random forces. The electric field intensity over the space is obtained from a finite difference method. Initially, the polymer is placed at one side of the space, and an electric field is applied to drive the polymer to the other side of the space through the nano-pore. In future, we plan to study the effect of the polymer size and the electric field on the electrophoretic velocity.

  • PDF

다결정 미세입자 소각입계면에서의 전위밀도 확산 (Dislocation Density Propagation adjacent to the Low Angle Grain Boundaries of Polycrystalline Materials)

  • 마정범
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.618-622
    • /
    • 2011
  • Specialized large-scale computational finite-element and molecular dynamic models have been used in order to understand and predict how dislocation density emission and contact stress field due to nanoindentation affect inelastic deformation evolution scales that span the molecular to the continuum level in ductile crystalline systems. Dislocation density distributions and local stress fields have been obtained for different crystalline slip-system and grain-boundary orientations. The interrelated effects of grain-boundary interfaces and orientations, dislocation density evolution and crystalline structure on indentation inelastic regions have been investigated.

Structural and Dynamic Studies of the Central Segments in the Self-complementary Decamer DNA Duplexes d(ACGTATACGT)2 and d(ACGTTAACGT)2

  • Park, Jin-Young;Lee, Joon-Hwa;Choi, Byong-Seok
    • BMB Reports
    • /
    • 제31권1호
    • /
    • pp.89-94
    • /
    • 1998
  • The structures of the self-complementary decamer duplexes, $d(ACGTATACGT)_2$ (TATA-duplex) and $d(ACGTTAACGT)_2$, (TTAA-duplex) has been obtained in solution by proton NMR spectroscopy and restrained molecular dynamics. The duplexes are essentially B-type, with distortions apparent at the TATA and TTAA steps. Theses distortions and their effects on dynamics have been investigated by the measurement of imino proton exchange time of the base-pairs. The unusual opening kinetics of central A T base-pairs could be correlated to the abnormal structural properties of the corresponding sequences.

  • PDF

Structures of proteases for ubiqutin and ubiquitin-like modifiers

  • Ha, Byung-Hak;Kim, Eunice Eun-Kyeong
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.435-443
    • /
    • 2008
  • Post-translational modifiers can alter the function of proteins in many different ways. The conjugation of ubiquitin (Ub) and ubiqutin-like modifiers (Ubls) to proteins has been shown to be especially crucial in regulating a variety of cellular processes including the cell cycle, growth control, quality control, localization and many more. It is a highly dynamic process and involves a number of enzymes called E1, E2 and E3. Ub and Ubls are removed from the target proteins by deubiquitinating enzymes (DUBs) or Ubl-specific proteases (ULPs), thereby deconjugation can act as an additional level of control over the ubiquitin-conjugation system. In addition, DUBs and ULPs are responsible for activating Ub and Ubls from their inactive corresponding precursor forms. Here we review recent progress in molecular details of these deconjugating enzymes of Ubls.

평판 위에서 움직이는 물방울에 대한 분자동역학 시뮬레이션 (A molecular dynamics simulation for the moving water droplet on a solid surface)

  • 홍승도;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1891-1895
    • /
    • 2008
  • Water covers 70% of the earth's surface and the human body consist of 75% of it. It is clear that water is one of the prime elements responsible for life on earth. Over the last 30 years or so, numerous studies have attempted to find out more about the water microscopically. In this paper, we investigated how the receding and advancing contact angle of the moving water droplet changes on a solid surface having various LJ epsilon parameters. To observe the dynamic contact angle history, a body force applied to all water molecules after obtained the water droplet in equilibrium with the solid surface. We obtained the density profile and receding and advancing contact angle of the moving water droplet

  • PDF

Introduction to Molecular Dynamic Simulation Employing a Reactive Force Field (ReaxFF) for Simulating Chemical Reactions of SiHx Radicals on Si Surfaces

  • 한상수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.93-93
    • /
    • 2010
  • In this talk, I will introduce a reactive force field (ReaxFF) molecular dynamics (MD) simulation. In contrast to common MD simulations with empirical FFs, we can predict chemical reactions (bond breaking and formation) in large scale systems with the ReaxFF simulation where all of the ReaxFF parameters are from quantum mechanical calculations such as density functional theory to provide high accuracy. Accordingly, the ReaxFF simulation provides both accuracy of quantum mechanical calculations and description of large scale systems of atomistic simulations at the same time. Here, I will first discuss a theory in the ReaxFF including the differences from other empirical FFs, and then show several applications for studying chemical reactions of SiHx radicals on Si surfaces, which is an important issue in Si process.

  • PDF

감마선 멸균처리가 초고분자량 폴리에틸렌의 크리프와 마모에 미치는 영향 (Effect of Gamma-Irradiation Sterilization on the Creep and Wear of Ultra-High Molecular Weight Polyethylene)

  • 이권용;이수철
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.90-91
    • /
    • 1998
  • The influence of gamma-irradiation sterilization on the creep and wear performance of ultra-high molecular weight polyethylene (UHMWPE) was investigated by conducting the dynamic compressive creep tests and pin-on-disc sliding wear tests. The changes of microstructure property, relative crystallinity, oxidation index, percent crosslinking, were also measured and the relationship between these and creep and wear results was discussed.

  • PDF

Fixed Bed Study for a Detritiation Adsorber

  • Kim K. R.;Lee M. S.;Paek S.;Yim S. P,;Ahn D. H.;Chung H.;Shim M. H.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.119-125
    • /
    • 2005
  • A method of predicting the tritium concentration in the air leaving an atmospheric detritiation dryer was modeled for designing a fixed bed dryer and preparing an advanced dryer control. In order to quantify the bed utilization and the dynamic capacity against an inlet humidity and a flow rate, a series of quantitative tests based on the break-through behavior were carried out in an isothermal fixed bed of synthetic zeolites such type as molecular sieve 4A, 5A, 13X and mordenite. The amount of water vapor breaking during the adsorption was estimated to give a breakthrough capacity at the various inlet flow rates and humidity conditions. The molecular sieve 13X exhibited a better adsorption performance at a given bed height.

  • PDF

산란 및 투과된 수소 이온의 분자 전산 연구 II. 니켈 (100) 표면의 45° 입사 (Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions II. 45° Incident Angle to Ni (100) Surface)

  • 서승혁;민웅기
    • 한국수소및신에너지학회논문집
    • /
    • 제12권1호
    • /
    • pp.51-63
    • /
    • 2001
  • In this paper molecular dynamics simulations were employed to investigate the structural and dynamic properties of hydrogen ions impacted on the Ni (100) surface with the $45^{\circ}$ incident angle. The initial kinetic energies of the hydrogen ion range from 100 to 1,600 eV. Together with the trajectory visualization of hydrogen ions, we computed scattering and penetration yields, mean energies and angles, and probability and energy distributions as a function of longitudinal and azimuthal directions. In the case of lower energy scattering ions, the multiple collision effects were found to be important to the third layers or lower. For higher energy penetrating ions, compared with the normal incident angle, it was significant the effective channeling effects through the Ni layers and the angle dependencies were indicated both in the longitudinal and the azimuthal angle directions.

  • PDF

탄소 나노튜브를 활용한 나노 구조물에 대한 시뮬레이션 연구 (A Study of Nanostructure by Carbon Nanotube Simulation)

  • 이준하;이흥주;송영진;윤영식
    • 반도체디스플레이기술학회지
    • /
    • 제4권3호
    • /
    • pp.11-15
    • /
    • 2005
  • This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic farces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

  • PDF