• Title/Summary/Keyword: Molecular beam

Search Result 556, Processing Time 0.022 seconds

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors (고전압 β-산화갈륨(β-Ga2O3) 전력 MOSFETs)

  • Mun, Jae-Kyoung;Cho, Kyujun;Chang, Woojin;Lee, Hyungseok;Bae, Sungbum;Kim, Jeongjin;Sung, Hokun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.

Target Size of $(Na^++K^+)$-ATPase and $Na^+,\;K^+)$Pump of Human Erythrocytes (사람 적혈구막의 $(Na^++K^+)-ATPase/Na^+,\;K^+\;Pump$의 Target Size)

  • Hah, Jong-Sik;Jung, Chan Y.
    • The Korean Journal of Physiology
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 1985
  • Previous biochemical studies indicate that $(Na^++K^+)-ATPase$ is composed of two subunits, ${\alpha}$ and ${\beta}$, in a form of ${\alpha}_2{\beta}_2$ with a molecular weight of approximately 300,000 daltons. There is also suggestive evidence that the $Na^+$, $K^+$ pump in human erythrocytes occurs in a complex with some glycolytic enzymes. We assessed here in situ assembly size of the $(Na^++K^+)-ATPase$ of human erythrocytes by applying classical target theory to radiation inactivation data of the ouabain-sensitive sodium flux and ATP hydrolysis of intact cells and ghosts. Cells(in the presence of cryoprotective agent) and ghosts were irradiated at $-45^{\circ}C$ to $-50^{\circ}C$ with an increasing dose of a 1.5 MeV electron beam, and after thawing, the pump and/or enzyme activities were assayed. Each activity measured was decreased as a simple exponential function of radiation dose, from which a radiation sensitive volume (target size) was calculated. When intact cells were used, the target size of both $(Na^++K^+)-ATPase$ and $Na^+$, $K^+$ pump was found to be approximately 600,000 daltons. This target size of the ATPase was reduced to approximately 325,000 daltons if the cells were pretreated with strophanthidin. When ghosts were used, the target size of the ATPase was again approximately 325,000 daltons. Our target size measurement suggests that, in intact cells, the $(Na^++K^+)-ATPase/Na^+,K^+$ pump exists either as a dimer of $(\alpha\beta)_2$ which is a functional unit or as a monomer of $(\alpha\beta)_2$ but in tight complex with other enzyme or enzymes. The results also suggest that this dimeric or heterocomplex association is dissociated during ghost preparation and strophanthidin treatment.

  • PDF

Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction (친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구)

  • Moon, Byung-Seok;Kim, Jae-Hong;Lee, Kyo-Chul;An, Gwang-Il;Cheon, Gi-Jeong;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.228-232
    • /
    • 2006
  • Purpose: electrophilic $^{18}F(T_{1/2}=110\;min)$ radionuclide in the form of $[^{18}F]F_2$ gas is of great significance for labeling radiopharmaceuticals for positron omission tomography (PET). However, its production In high yield and with high specific radioactivity is still a challenge to overcome several problems on targetry. The aim of the present study was to develop a method suitable for the routine production of $[^{18}F]F_2$ for the electrophilic substitution reaction. Materials and Methods: The target was designed water-cooled aluminum target chamber system with a conical bore shape. Production of the elemental fluorine was carried out via the $^{18}O(p,n)^{18}F$ reaction using a two-step irradiation protocol. In the first irradiation, the target filled with highly enriched $^{18}O_2$ was irradiated with protons for $^{18}F$ production, which were adsorbed on the inner surface of target body. In the second irradiation, the mixed gas ($1%[^{19}F]F_2/Ar$) was leaded into the target chamber, fellowing a short irradiation of proton for isotopic exchange between the carrier-fluorine and the radiofluorine absorbed in the target chamber. Optimization of production was performed as the function of irradiation time, the beam current and $^{18}O_2$ loading pressure. Results: Production runs was performed under the following optimum conditions: The 1st irradiation for the nuclear reaction (15.0 bar of 97% enriched $^{18}O_2$, 13.2 MeV protons, 30 ${\mu}A$, 60-90 min irradiation), the recovery of enriched oxygen via cryogenic pumping; The 2nd irradiation for the recovery of absorbed radiofluorine (12.0 bar of 1% $[^{19}F]fluorine/argon$ gas, 13.2 MeV protons, 30 ${\mu}A$, 20-30 min irradiation) the recovery of $[^{18}F]fluorine$ for synthesis. The yield of $[^{18}F]fluorine$ at EOB (end of bombardment) was achieved around $34{\pm}6.0$ GBq (n>10). Conclusion: The production of $^{18}F$ electrophilic agent via $^{18}O(p,n)^{18}F$ reaction was much under investigation. Especially, an aluminum gas target was very advantageous for routine production of $[^{18}F]fluorine$. These results suggest the possibility to use $[^{18}F]F_2$ gas as a electrophilic substitution agent.

Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time (As 차단 시간 변화에 의한 InAs 양자점의 광학적 특성)

  • Choi, Yoon Ho;Ryu, Mee-Yi;Jo, Byounggu;Kim, Jin Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.86-91
    • /
    • 2013
  • The optical properties of InAs quantum dots (QDs) grown on GaAs substrates grown by molecular beam epitaxy have been studied using photoluminescence (PL) and time-resolved PL measurements. InAs QDs were grown using an arsenic interruption growth (AIG) technique, in which the As flux was periodically interrupted by a closed As shutter during InAs QDs growth. In this study, the shutter of As source was periodically opened and closed for 1 (S1), 2 (S2), or 3 s (S3). For comparison, an InAs QD sample (S0) without As interruption was grown in a pure GaAs matrix for 20 s. The PL intensity of InAs QD samples grown by AIG technique is stronger than that of the reference sample (S0). While the PL peaks of S1 and S2 are redshifted compared to that of S0, the PL peak of S3 is blueshifted from that of S0. The increase of the PL intensity for the InAs QDs grown by AIG technique can be explained by the reduced InAs clusters, the increased QD density, the improved QD uniformity, and the improved aspect ratio (height/length). The redshift (blueshift) of the PL peak for S1 (S3) compared with that for S0 is attributed to the increase (decrease) in the QD average length compared to the average length of S0. The PL intensity, PL peak position, and PL decay time have been investigated as functions of temperature and emission wavelength. S2 shows no InAs clusters, the increased InAs QD density, the improved QD uniformity, and the improved QD aspect ratio. S2 also shows the strongest PL intensity and the longest PL decay time. These results indicate that the size (shape), density, and uniformity of InAs QDs can be controlled by using AIG technique. Therefore the emission wavelength and luminescence properties of InAs/GaAs QDs can also be controlled.

The Spin-Rotation Interaction of the Proton and the Fluorine Nucleus in the Tetrahedral Spherical Top Molecules

  • Lee, Sang-Soo;Ozier, Irving;Ramsey, N.F.
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 1973
  • The spin-rotation constants of the proton and tile fluorine nucleus in C $H_4$, Si $H_4$, Ge $H_4$, C $F_4$, Si $F_4$ and Ge $F_4$ were determined experimentally by the molecular beam magnetic resonance method. From the Hamiltonian and the high field approximation, the quantized energy level is given by the following equation. W $m_{I}$ $m_{J}$=- $g_{I}$ $m_{I}$H- $g_{J}$ $m_{J}$H- $C_{av}$ $m_{I}$ $m_{J}$, where $c_{av}$ is one third of the trace of the C tensor. In the nuclear resonance experiment, the proton and the fluorine nuclear resonance curves consist of many unresolved lines given by v=- $g_{J}$H- $C_{av}$ $m_{I}$, and a Gaussian approximation is made to correlate $c_{av}$ to the experimentally obtained half-width of the resonance curve. In the rotational resonance experiment, the five resonance peaks as predicted by v=- $g_{I}$H- $c_{av}$ $m_{I}$, $m_{I}$=0, $\pm$1 and $\pm$2, were all observed. The magnitude of car was determined by measuring the frequency distance between two adjacent peaks. The sign of $c_{av}$ was determined by the side peak suppression technique. The technique is described, and the sign and magnitude of the spin-rotation constant cav are summarized as following: for C $H_4$ -10.3$\pm$0.4tHz(from the rotational resonance), for SiH +3.71$\pm$0.08kHz(from the nuclear resonance), for Ge $H_4$+3.79$\pm$0.13kHz(from the nuclear resonance), for C $F_4$, -6.81$\pm$0.08kHz(from the rotational resonance), for Si $F_4$, -2.46$\pm$0.06kHz(from the rotational resonance), and finally for Ge $F_4$-1.84$\pm$0.04kHz(from the rotational resonance).onal resonance).esonance).

  • PDF

Growth Temperature Effects of In0.5Al0.5As Buffer Layer on the Optical Properties of In0.5Ga0.5As/In0.5Al0.5As Multiple Quantum Wells Grown on GaAs (GaAs 기판 위에 성장한 In0.5Ga0.5As/In0.5Al0.5As 다중양자우물의 광학적 특성에 대한 In0.5Al0.5As 버퍼층 성장온도의 영향)

  • Kim, Hee-Yeon;Oh, H.J.;Ahn, S.W.;Ryu, Mee-Yi;Lim, J.Y.;Shin, S.H.;Kim, S.Y.;Song, J.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • The luminescence properties of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ multiple quantum wells (MQWs) grown on $In_{0.5}Al_{0.5}As$ buffer layers have been studied by using photoluminescence (PL) and time-resolved PL measurements. A$1-{\mu}m$ thick $In_{0.5}Al_{0.5}As$ buffer layers were deposited on a 500 nm thick GaAs layer, followed by the deposition of the InGaAs/InAlAs MQWs. In order to investigate the effects of InAlAs buffer layer on the optical properties of the MQWs, four different temperature sequences are used for the growth of InAlAs buffer layer. The growth temperature for InAlAs buffer layer was varied from 320^{\circ}C to $580^{\circ}C$. The MQWs consist of three $In_{0.5}Ga_{0.5}$As wells with different well thicknesses (2.5 nm, 4.0 nm, and 6.0 nm thick) and 10 nm thick $In_{0.5}Al_{0.5}$As barriers. The PL spectra from the MQWs with InAlAs layer grown at lower temperature range ($320-580^{\circ}C$) showed strong peaks from 4 nm QW and 6 nm QW. However, for the MQWs with InAlAs buffer grown at higher temperature range ($320-480^{\circ}C$), the PL spectra only showed a strong peak from 6 nm QW. The strongest PL intensity was obtained from the MQWs with InAlAs layer grown at the fixed temperature of $480^{\circ}C$, while the MQWs with buffer layer grown at higher temperature from $530^{\circ}C$ to $580^{\circ}C$ showed the weakest PL intensity. From the emission wavelength dependence of PL decay times, the fast and slow decay times may be related to the recombination of carriers in the 4 nm QW and 6 nm QW, respectively. These results indicated that the growth temperatures of InAlAs layer affect the structural and optical properties of the MQWs.