• 제목/요약/키워드: Molecular aggregation

검색결과 233건 처리시간 0.033초

Study on the Controlled Gel Formation and Photochromic Properties of a New Cholesterol-bridge-naphthopyran Dyad

  • Sun, Lin;Wang, Guang;Liu, Longbo;Wang, Ai Xia
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1343-1348
    • /
    • 2014
  • A cholesterol-bridge-naphthopyran dyad (NP-MCB) was designed and synthesized. NP-MCB can readily self-assemble into gels under ultrasound-radiation in several organic solvents and the formed gels easily transfer to solution by heat. This reversible process can be repeated many times. Scanning Electron Microscopy results showed that the morphologies of all formed xerogels in different solvents have fibrillar microstructure. The gels formation was due to energy and pressure afforded by the ultrasonic process, resulting in formation of molecular hydrogen bonding and molecular aggregation. NP-MCB displayed the normal photochromism both in solution and gel states. The kinetic results confirm that the colored merocyanine in gels show a slower fading speed than that in solution due to the compact aggregation of NP-MCB molecules in gels. The xerogel film formed in polar gelling solvent had large surface wettability than that in nonpolar gelling solvent.

아스팔텐에 대한 연구동향 (Review on Asphaltene Architecture)

  • 오경석
    • 한국응용과학기술학회지
    • /
    • 제31권1호
    • /
    • pp.151-158
    • /
    • 2014
  • Asphaltenes are generally defined by their solubility when a light alkane, such as n-heptane or n-pentane, is mixed with crude oils or oil sand bitumen. However, this definition is nowadays not enough to understand their behaviors during oil recovery, transport, storage, and even refinery operation. Interestingly, the researches regarding asphaltenes have been vastly presented within last decade. This is because the production of heavy oils is becoming larger and asphaltenes are known to play an important role in the property changes of heavy oils. In this paper, the researches regarding molecular weight, aggregation behavior of asphaltenes are introduced and discussed. It is expected that analytical studies will be appeared continuously in the form of global collaboration in order to describe asphaltene molecules as close as possible based on their origin.

트립토판 합성효소 α 소단위체의 다양한 단백질 덩어리 형성 (Various Aggregate Forms of Tryptophan Synthase α-Subunit)

  • 박명원;임운기
    • 생명과학회지
    • /
    • 제23권2호
    • /
    • pp.319-323
    • /
    • 2013
  • 단백질 덩어리는 질환의 원인이 되기도 하고, 유용한 유전자 재조합 단백질의 생산시 문제를 야기하기도 한다. 본 연구에서는 조건을 달리함으로 트립토판 합성효소 ${\alpha}$ 소단위체로부터 적어도 3가지 이상 다른 종류의 덩어리가 생길 수 있음을 보여주고 있다; (1) 불투명 흰색 침전 가능한 덩어리 (2) 투명하고 겔 유형의 침전 가능한 덩어리 (3) 불침전 덩어리. 이런 다른 종류의 덩어리 형태는 다른 기작을 통해 일어날 것으로 추정된다.

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq

  • Lazar, Prettina;Lee, Yun-O;Kim, Song-Mi;Chandrasekaran, Meganathan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1519-1526
    • /
    • 2010
  • The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.

Protectors of Oxidative Stress Inhibit AB(1-42) Aggregation in vitro

  • Kong, Byung-Mun;Ueom, Jeong-Hoon;Kim, In-Kyung;Lim, Dong-Yeol;Kang, Jong-Min;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권12호
    • /
    • pp.1773-1777
    • /
    • 2002
  • Reactive oxygen species(ROS) have been investigated to have pivotal roles on amyloidogenecity of $\beta-amyloidpeptide(A\beta)$, the major component of senile plaques in Alzheimer's disease(AD) brain. Addition of radical scavengers is one of the on-going strategies for therapeutic treatment for AD patients. Hsp104 protein including two ATP binding sites from Saccharomyces cerevisiae, as a molecular chaperone, was known to function as a protector of ROS generation when exposed to oxidative stress in our previous study. This observation has led us to investigate Hsp104 protein as a molecular mediator of $A{\beta}$ aggregation in this study. We have developed a new way of expression for Hsp104 protein using GST-fusion tag. As we expected, formation of $A{\beta}$ aggregate was protected by wild type Hsp104 protein, but not by the two ATP-binding site mutant, based on Thioflavin-T fluorescence. Interestingly, Hsp104 protein was observed to keep $A{\beta}$ from forming aggregates independent of ATP binding. On the other hand, disaggregation of $A{\beta}$ aggregates by wild type Hsp104 was totally dependent on the presence of ATP. On the other hand, mutant Hsp104 with two ATP binding sites altered exhibited no inhibition. Another effective antioxidant, hydrazine analogs of curcumin were also effective in $A{\beta}$ fibrilization as protectors against oxidative stress. Based on these observations we conclude that Hsp104 and curcumin derivatives, as protectors of oxidative stress, inhibit $A{\beta}$ aggregation in virto and can be candidates for therapeutic approaches in cure of some neurodegenerative disease.

매실 추출물의 산화질소 생성과 NF-κB 활성 조절을 통한 LPS유도성 THP-1 세포 동형성 응집의 억제 효과 (Extract from Prunus mume Sieb. et Zucc. Fruit Prevents LPS-induced Homotypic Aggregation of Monocytic THP-1 Cells via Suppression of Nitric Oxide Production and NF-κB Activation)

  • 이혜림;박영숙;김현정;이아람;최지혜;피재호;박헌용;김종민
    • 생명과학회지
    • /
    • 제25권7호
    • /
    • pp.801-809
    • /
    • 2015
  • 활성화된 단핵구의 동형성 세포 부착(동형성 응집)은 염증반응, 분화, 이동과 같은 생리학적, 병리학적 과정에서 중요한 역할을 한다. 매실 추출물은 항바이러스, 항균, 항암작용과 같은 효과를 보인다고 알려 져있다. 따라서, 매실 추출물은 단핵구의 동형성 응집 억제를 통해 염증반응을 조절할 가능성을 가진다. 본 연구에서는, 염증성 질환에서 매실 추출물의 치료효능을 뒷받침할 수 있는 분자적 기전을 조사하였다. 매실 추출물이 지질다당질(LPS)로 활성화된 단핵구의 동형성 응집을 억제함을 확인하였다. 이러한 효과는 LPS로 활성화된 THP-1 세포의 iNOS 단백질 발현 억제를 통해, 산화질소(NO) 생산의 감소로 조절되는 것을 발견하였다. 또한 NO 생성물질인 SNAP 처리 실험을 통해 단핵구 동형성 응집을 억제하는데 매실에 의한 NO 억제가 필수적인 기작임을 확인하였다. 게다가, 매실 추출물은 LPS로 유도된 IκB-α 의 인산화와 NF-κB의 핵내로의 이동을 현저하게 감소시키는 것을 확인하였다. 매실 추출물은 NO생성과 NF-κB 활성 억제를 통해 LPS로 활성화된 단핵구의 동형성 응집을 저해하고 이를 통해 항염증 효과를 유도할 수 있다는 결론으로부터 만성 염증성 질환의 치료와 예방에 매실 추출물의 효능을 제시하고자 한다.

Inhibitory Effect of Ginkgolide B on Platelet Aggregation in a cAMP- and cGMP-dependent Manner by Activated MMP-9

  • Cho, Hyun-Jeong;Nam, Kyung-Soo
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.678-683
    • /
    • 2007
  • Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metallo-proteinase-9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular $Ca^{2+}$ mobilization, and thromboxane $A_2$ ($TXA_2$) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or $TXA_2$ synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular $Ca^{2+}$ mobilization and $TXA_2$ production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.

폴리에틸렌 옥사이드가 암포테리신-B의 응집 특성 및 독성에 미치는 영향 (The Effect of Polyethylene Oxide on the Aggregation State and Toxicity of Amphotericin B)

  • 유봉규
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권1호
    • /
    • pp.7-12
    • /
    • 2001
  • Amphotericin B (AmB) is a drug of choice for the treatment of systemic fungal diseases, but its use is considerably limited due to a high incidence of toxicity, particularly nephrotoxicity. It has been demonstrated that the toxicity of AmB is caused by self-aggregated species of the drug and that unaggregated (monomeric) drug is nontoxic but still expresses antifungal activity. Poly (ethylene oxide) (PEO) is a water-soluble polymer, which may impact the aggregation state of AmB. We have studied the aggregation state of AmB as a function of PEO molecular weight and concentration. At 3,000 and 8,000 g/mole, there was minimal or no change of critical aggregation concentration (CAC) of AmB regardless of the concentration of polymer. By contrast at 20,000 g/mole, the CAC of AmB strikingly increased to 24.3 and $37.5\;{\mu}M$ at 5.0% and 10 % w/v of polymer, respectively. The critical overlap concentration (COC) of PEO 20,000 g/mole was 5.5%. It appears that an interaction between monomeric AmB and polymer coil increases above the COC, competing with self-aggregation of the drug. Accordingly, the degree of aggregation of AmB stayed low and the toxicity became less. There was no such effect at 3,000 and 8,000 g/mole of PEO, owing perhaps to small dimensions in comparison to AmB. Based upon these findings, less toxic AmB formulation may be developed by a pharmaceutical technique such as solid dispersion system containing both AmB and PEO 20,000 g/mole.

  • PDF

Comparative Study on the Structural and Thermodynamic Features of Amyloid-Beta Protein 40 and 42

  • Lim, Sulgi;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.237-249
    • /
    • 2014
  • Deposition of amyloid-${\beta}$ ($A{\beta}$) proteins is the conventional pathological hallmark of Alzheimer's disease (AD). The $A{\beta}$ protein formed from the amyloid precursor protein is predominated by the 40 residue protein ($A{\beta}40$) and by the 42 residue protein ($A{\beta}42$). While $A{\beta}40$ and $A{\beta}42$ differ in only two amino acid residues at the C-terminal end, $A{\beta}42$ is much more prone to aggregate and exhibits more neurotoxicity than $A{\beta}40$. Here, we investigate the molecular origin of the difference in the aggregation propensity of these two proteins by performing fully atomistic, explicit-water molecular dynamics simulations. Then, it is followed by the solvation thermodynamic analysis based on the integral-equation theory of liquids. We find that $A{\beta}42$ displays higher tendency to adopt ${\beta}$-sheet conformations than $A{\beta}40$, which would consequently facilitate the conversion to the ${\beta}$-sheet rich fibril structure. Furthermore, the solvation thermodynamic analysis on the simulated protein conformations indicates that $A{\beta}42$ is more hydrophobic than $A{\beta}40$, implying that the surrounding water imparts a larger thermodynamic driving force for the self-assembly of $A{\beta}42$. Taken together, our results provide structural and thermodynamic grounds on why $A{\beta}42$ is more aggregation-prone than $A{\beta}40$ in aqueous environments.

  • PDF