DOI QR코드

DOI QR Code

Inhibitory Effect of Ginkgolide B on Platelet Aggregation in a cAMP- and cGMP-dependent Manner by Activated MMP-9

  • Cho, Hyun-Jeong (College of Medicine and Cardiovascular Medical Research Center, Dongguk University) ;
  • Nam, Kyung-Soo (Department of Pharmacology, College of Medicine, Dongguk University)
  • Published : 2007.09.30

Abstract

Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metallo-proteinase-9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular $Ca^{2+}$ mobilization, and thromboxane $A_2$ ($TXA_2$) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or $TXA_2$ synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular $Ca^{2+}$ mobilization and $TXA_2$ production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.

Keywords

References

  1. Braquet, P. (1986) Proofs of involvement of PAF-acether in various immune disorders using BN 52021 (ginkgolide B): a powerful PAF-acether antagonist isolated from Ginkgo biloba L. Adv. Prostaglandin Thromboxane Leukotriene Res. 26, 179-198.
  2. Brikedal-Hansen, H. (1995) Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7, 728-735. https://doi.org/10.1016/0955-0674(95)80116-2
  3. Cattaneo, M., Tenconi, P. M., Lecchi, A. and Mannucci, P. M. (1991) In vitro effects of picotamide on human platelet aggregation, the release reaction and thromboxane $B_2$ production. Thromb. Res. 62, 717-724. https://doi.org/10.1016/0049-3848(91)90375-7
  4. Charo, I. F., Feinman, R. D. and Detwiler, T. C. (1977) Interrelations of platelet aggregation and secretion. J. Clin. Invest. 60, 866-873. https://doi.org/10.1172/JCI108841
  5. Chatterjee, A. S. (1984) Effects of Ginkgo biloba extract on cerebral metabolic processes; in Agnoli, A., Rapin, J. R., Scapagnini, V., Weitbrecht, W. V. (eds.), pp. 5-15, Libbey, London, UK.
  6. Cho, H. J., Ham, H. S., Lee, T. K., Jung, Y. J., Choi, S. A., Kang, H. C. and Park, H. J. (2004) Inhibitory effect of cordycepin on human platelet aggregation. J. Biomed. Lab. Sci. 10, 1-8.
  7. Direu, K. and De Feudis, F. V. (2000) In vitro studies of the pharmacological and biochemical activities of Ginkgo biloba extract (EGb761) and its constituents; in Van Beek, T. A. (ed.), Harwood Academic Publishers, Amsterdam, The Netherlands.
  8. Hasler, A. (2000) Chemical constituents of Ginkgo biloba; in Van Beek, T. A. (ed.), Harwood Academic Publishers, Amsterdam, The Netherlands.
  9. Homer, K. L. and Wanstall, J. C. (2002) Inhibition of rat platelet aggregation by the diazeniumdiolate nitric oxide donor MAHMA NONOate. Br. J. Pharmacol. 137, 1071-1081. https://doi.org/10.1038/sj.bjp.0704971
  10. Jang, E. K., Azzam, J. E., Dickinson, N. T., Davidson, M. M. and Haslam, R. J. (2002) Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside. Br. J. Haematol. 117, 664-675. https://doi.org/10.1046/j.1365-2141.2002.03479.x
  11. Kaibuchi, K., Sano, K., Hoshijima, M., Takai, Y. and Nishizuka, Y. (1982) Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium 3, 323-335. https://doi.org/10.1016/0143-4160(82)90020-3
  12. Karcher, L., Zagermann, P. and Krieglstein, J. (1984) Effect of an extract of Ginkgo biloba on rat brain energy metabolism in hypoxia. Naunyn Schmiedebergs Arch Pharmacol. 27, 31-35.
  13. Kinsella, B. T., O'Mahony, D. J. and FitzGerald, G. A. (1994) Phosphorylation and regulated expression of the human thromboxane $A_2$ receptor. J. Biol. Chem. 269, 29914-29919.
  14. Kleijnen, J. and Knipschild, P. (1992) Ginkgo biloba. Lancet 340, 1136-1139. https://doi.org/10.1016/0140-6736(92)93158-J
  15. Komalavilas, P. and Lincoln, T. M. (1994) Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase. J. Biol. Chem. 269, 8701-8707.
  16. Lijnen, H. R. (2001) Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost. 86, 324-333. https://doi.org/10.1055/s-0037-1616230
  17. Menshikov, M. Yu., Ivanova, K., Schaefer, M., Drummer, C. and Gerzer, R. (1993) Influence of the cGMP analog 8-PCPT-cGMP on agonist-induced increases in cytosolic ionized $Ca^{2+}$ and on aggregation of human platelets. Eur. J. Pharmacol. 245, 281-284. https://doi.org/10.1016/0922-4106(93)90108-L
  18. Nakamura, T., Ebihara, I., Shinada, N. and Koide, H. (1998) Effects of cigarette smoking on plasma metalloproteinases-9 concentration. Clin. Chem. Acta. 276, 173-177. https://doi.org/10.1016/S0009-8981(98)00104-1
  19. Nishikawa, M., Tanaka, T. and Hidaka, H. (1980) $Ca^{2+}-calmodulin-dependent$ phosphorylation and platelet secretion. Nature 287, 863-865. https://doi.org/10.1038/287863a0
  20. Park, W. H., Kim, H. K., Nam, K. S., Shon, Y. H., Jeon, B. H., Moon, S. K., Kim, M. G. and Kim, C. H. (2004) Inhibitory effect of GBH on platelet aggregation through inhibition of intracellular $Ca^{2+}$ mobilization in activated human platelets. Life Sci. 75, 3063-3076. https://doi.org/10.1016/j.lfs.2004.07.010
  21. Pasqui, A. L., Capecci, P. L., Ceccatelli, L., Mazza, S., Gistri, A., Laghi Pasini, F. and Di Perry, T. (1991) Nitroprusside in vitro inhibits platelet aggregation and intracellular calcium translocation. Effect of hemoglobin. Thromb. Res. 61, 113-122.
  22. Qi, R., Ozaki, Y., Satoh, K., Yang, L. B., Asazuma, N., Yatomi, Y. and Kume, S. (1996) Intracellular levels of cyclic AMP and cyclic GMP differentially modify platelet aggregate size in human platelets activated with epinephrine or ADP. J. Cardiovasc. Pharmacol. 28, 215-225. https://doi.org/10.1097/00005344-199608000-00006
  23. Ray, J. M. and Stetler-Stevenson, W. G. (1994) The role of matrix metalloproteinases and their inhibitors in tumor invasion, metastasis and angiogenensis. Eur. Respir. J. 7, 2062-2072.
  24. Rodomski, M.W., Palmer, R. M. J. and Monacade, S. (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc. Natl. Acad. Sci. USA 87, 5193-5197. https://doi.org/10.1073/pnas.87.13.5193
  25. Sawicki, G., Salas, E., Murat, J., Miszta-Lane, H. and Radomski, M. W. (1997) Release of gelatinase A during platelet activation mediates aggregation. Nature 386, 616-618. https://doi.org/10.1038/386616a0
  26. Schaeffer, J. and Blaustein, M. P. (1989) Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium 10, 101-113. https://doi.org/10.1016/0143-4160(89)90050-X
  27. Schwartz, S. M., Heinmark, R. L. and Majesky, M. W. (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70, 1177-1209. https://doi.org/10.1152/physrev.1990.70.4.1177
  28. Sheu, J. R., Fong, T. H., Liu, C. M., Shen, M. Y., Chen, T. L., Chang, Y., Meng, S. L. and Hsiao, G. (2004) Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies. Br. J. Pharmacol. 143, 193-201. https://doi.org/10.1038/sj.bjp.0705917
  29. Sudo, T., Ito, H. and Kimura, Y. (2003) Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the antiplatelet drug, cilostazol, in platelets. Platelets 14, 381-390. https://doi.org/10.1080/09537100310001598819
  30. Tang, W. and Eisenbrand, G. (1992) Chinese drugs of plant origin: Chemistry, Phamacology, and use in traditional and modern medicine, Springer-Verlag, Berlin, Germany.
  31. Van Beek, T. A. (2000) Introduction Ginkgo biloba: in Van Beek, T. A. (ed.), Harwood Academic Publishers, Amsterdam.
  32. Wang, R. G., Zhu, Y., Halushka, P. V., Lincoln, T. M. and Mendelsohn, M. E. (1998) Mechanism of platelet inhibition by nitric oxide: In vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 95, 4888-4893. https://doi.org/10.1073/pnas.95.9.4888

Cited by

  1. Macrophage inhibitory cytokine-1 transactivates ErbB family receptors via the activation of Src in SK-BR-3 human breast cancer cells vol.43, pp.2, 2010, https://doi.org/10.5483/BMBRep.2010.43.2.091
  2. Inhibitory effect ofGinkgo bilobaextract on fatty liver: Regulation of carnitine palmitoyltransferase 1a and fatty acid metabolism vol.13, pp.10, 2012, https://doi.org/10.1111/j.1751-2980.2012.00627.x
  3. Ginkgolide B Reduces Inflammatory Protein Expression in Oxidized Low-density Lipoprotein-stimulated Human Vascular Endothelial Cells vol.57, pp.6, 2011, https://doi.org/10.1097/FJC.0b013e31821a50a8
  4. The efficacy of ginkgolide B in the acute treatment of migraine aura: an open preliminary trial vol.34, pp.S1, 2013, https://doi.org/10.1007/s10072-013-1413-x
  5. Pancreatic lipase inhibition activity of trilactone terpenes ofGinkgo biloba vol.26, pp.4, 2011, https://doi.org/10.3109/14756366.2010.525509
  6. Blood Flow Improvement Effect of Bokbunja (Rubus coreanus) Seed Oil in High-Fat Diet-Fed Mouse Model vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1105
  7. Anti-platelet effect of ginkgolide a from Ginkgo biloba vol.57, pp.2, 2014, https://doi.org/10.1007/s13765-013-4275-2
  8. Risk of Hemorrhage Associated with Co-Prescriptions forGinkgo bilobaand Antiplatelet or Anticoagulant Drugs vol.17, pp.6, 2011, https://doi.org/10.1089/acm.2010.0295
  9. Ginkgo biloba extract enhances antiplatelet and antithrombotic effects of cilostazol without prolongation of bleeding time vol.124, pp.3, 2009, https://doi.org/10.1016/j.thromres.2009.02.010
  10. Molecular mechanisms underlying the cholesterol-lowering effect of Ginkgo biloba extract in hepatocytes: a comparative study with lovastatin vol.30, pp.9, 2009, https://doi.org/10.1038/aps.2009.126
  11. Transcriptome profiling analysis reveals multiple modulatory effects of Ginkgo biloba extract in the liver of rats on a high-fat diet vol.276, pp.5, 2009, https://doi.org/10.1111/j.1742-4658.2009.06886.x