• Title/Summary/Keyword: Molecular aggregation

Search Result 233, Processing Time 0.026 seconds

Inhibitory Effect of Scopoletin on U46619-induced Platelet Aggregation through Regulation of Ca2+ Mobilization

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Platelet aggregation is essential for hemostatic process in case of blood vessels damages. However, excessive platelet aggregation can cause cardiovascular disorders including atherosclerosis, thrombosis and myocardial infarction. Scopoletin is usually found in the roots of genus Scopolia or Artemisia, and is known to have anticoagulant and anti-malarial effects. This study investigated the effect of scopoletin on human platelet aggregation induced by U46619, an analogue of thromboxane $A_2(TXA_2)$. Scopoletin had anti-platelet effects by down-regulating $TXA_2$ and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), the aggregation-inducing molecules generated in activated platelets. On the other hand, scopoletin increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are known to be intracellular $Ca^{2+}$ antagonists. This resulted in inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in U46619-induced human platelet aggregation. In addition, scopoletin inhibited the release of adenosine trisphosphate (ATP) in dose-dependent manner. This result means that the aggregation amplification activity through the granule secretion in platelets was suppressed by scopoletin. Therefore, we demonstrated that scopoletin has a potent antiplatelet effect and is highly likely to prevent platelet-derived vascular disease.

Antithrombotic Effect of Artemisinin through Phosphoprotein Regulation in U46619-induced Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.184-189
    • /
    • 2023
  • Normal activation of platelets and their aggregation are crucial during hemostasis process. It appears excessive or abnormal aggregation of platelets may bring about cardiovascular diseases like stroke, atherosclerosis, and thrombosis. For this reason, finding a substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artemisinin, a compound derived from Artemisia or Scopolia plants, has shown potential in various areas such as anticancer and Alzheimer's disease research. However, the specific role and mechanisms by which artemisinin influences platelet activation and thrombus formation are not yet fully understood. This study investigated the effects of artemisinin on platelet activation and thrombus formation. This study examined the effect of artemisinin on regulation of U46619-induced platelet aggregation, granule secretion. In addition, the effects of artemisinin on phosphorylation of PI3K/Akt and MAPK pathway involved in platelet aggregation was studied. As a result, artemisinin significantly downregulated of PI3K/Akt and MAPK pathway. In addition, artemisinin significantly reduced granule secretion, and platelet aggregation was inhibited by artemisinin. Therefore, we suggest that artemisinin is an anti-platelet substance that regulates PI3K/Akt and MAPK pathway and is valuable as a therapeutic and preventive agent for platelet-derived cardiovascular disease.

Suppression of a Residue 173 Mutant Form on Aggregation of Tryptophan Synthase α-Subunits from Escherichia coli (대장균 트립토판 중합효소 α 소단위체의 응집 형성에 미치는 잔기 173 치환체의 억제 효과)

  • Jeong, Jae Kap;Park, Hoo Hwi;Lim, Woon Ki
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.729-733
    • /
    • 2022
  • Aggregation of normally soluble proteins can cause disease-related problems. Tryptophan synthase α-subunit (αTS) in E. coli adopts one of most popular structural scaffolds, the TIM barrel fold. Previous mutagenesis of the αTS gene resulted in many aggregation-prone mutant proteins. Here, Y173F (Tyr at residue 173 to Phe) substitution, which imparts increased stability, was tested for its ability to suppress aggregation of aggregation-prone mutant proteins (Y4C, S33L, P28L, P28S, G44S, D46N, P96L, and P96S). Aggregation was suppressed in all eight severe aggregate-forming mutants (all differing in their mutation positions), by the Y173F replacement. P28L αTS, which was available in pure form, was further analyzed and showed reduced secondary structure content, lower stability, and a looser structure with more exposed hydrophobic surface compared to the wild type protein. A double mutant P28L/Y173F protein showed almost no indication of these changes compared to the wild type protein. We hypothesized that Tyr at position 173 in αTS is positioned at the hydrophobic core and may serve to suppress the aggregation of this protein caused by other residues. Important residue (s) could be working widely in the prevention/suppression of protein aggregation.

The measurement into Merocyanine Dye J-aggregaion of characteristic as various temperature by STM (STM을 이용한 온도 변화에 따른 Merocyanine Dye J-aggregation 특성측정)

  • Yang, Chang-Heon;Lee, Ji-Yoon;Kim, Gyong-Chol;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.165-166
    • /
    • 2008
  • We investigate characteristics of J-aggregation as take advantage of LB technic. In order to confirm the applications possible for the molecular electronic device, the morphological properties of merocyanine dye were investigated by AFM. ${\pi}-A$ curves investigated the surface pressure of the LB film from a liquid to a solid state ranged between 90 and 100 mN/m. We observed aggregation and it's characteristics by using visible reflection spectroscopy. We have observed morphology of merocyanine dye on gold surface by STM. focuses on results obtained in mercocyanide dye of J-aggregation. When LB films of merocyanine dye are mixed with arachidic acid, J-aggregate formation is exhibited. J-aggregate formation has been serving as typical systems in revealing the physical and structural aspects of nano-sized molecular aggregates constructed as muiltilayers.

  • PDF

Patient-specific pluripotent stem cell-based Parkinson's disease models showing endogenous alpha-synuclein aggregation

  • Oh, Yohan
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.349-359
    • /
    • 2019
  • After the first research declaring the generation of human induced pluripotent stem cells (hiPSCs) in 2007, several attempts have been made to model neurodegenerative disease in vitro during the past decade. Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is mainly characterized by motor dysfunction. The formation of unique and filamentous inclusion bodies called Lewy bodies (LBs) is the hallmark of both PD and dementia with LBs. The key pathology in PD is generally considered to be the alpha-synuclein (${\alpha}$-syn) accumulation, although it is still controversial whether this protein aggregation is a cause or consequence of neurodegeneration. In the present work, the recently published researches which recapitulated the ${\alpha}$-syn aggregation phenomena in sporadic and familial PD hiPSC models were reviewed. Furthermore, the advantages and potentials of using patient-derived PD hiPSC with focus on ${\alpha}$-syn aggregation have been discussed.

NMR-based structural characterization of transthyretin in its aggregation-prone state

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.91-95
    • /
    • 2020
  • Transthyretin (TTR) is an abundant protein in blood plasma and cerebrospinal fluid (CSF), working as a homo-tetrameric complex to transport thyroxine (T4) and a holo-retinol binding protein. TTR is well-known for its amyloidogenic property; several types of systemic amyloidosis diseases are caused by aggregation of either wild-type TTR or its variants, for which more than 100 mutations were reported to increase the amyloidogenicity of TTR. The rate-limiting step of TTR aggregation is the dissociation of a monomeric subunit from a tetrameric complex. A wide range of biochemical and biophysical techniques have been employed to elucidate the TTR aggregation processes, among which nuclear magnetic resonance (NMR) spectroscopy contributed much to characterize the structural and functional features of TTR during its aggregation processes. The present review focuses on discussing the recent advances of our understanding to the amyloidosis mechanism of TTR and to the structural features of its monomeric aggregation-prone state in solution. We expect that the present review provides novel insights to appreciate the molecular basis of TTR amyloidosis and to develop novel therapeutic strategies to treat diverse TTR-related diseases.

Screening Molecular Chaperones Similar to Small Heat Shock Proteins in Schizosaccharomyces pombe

  • Han, Jiyoung;Kim, Kanghwa;Lee, Songmi
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.272-279
    • /
    • 2015
  • To screen molecular chaperones similar to small heat shock proteins (sHsps), but without ${\alpha}$-crystalline domain, heat-stable proteins from Schizosaccharomyces pombe were analyzed by 2-dimensional electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sixteen proteins were identified, and four recombinant proteins, including cofilin, NTF2, pyridoxin biosynthesis protein (Snz1) and Wos2 that has an ${\alpha}$-crystalline domain, were purified. Among these proteins, only Snz1 showed the anti-aggregation activity against thermal denaturation of citrate synthase. However, pre-heating of NTF2 and Wos2 at $70^{\circ}C$ for 30 min, efficiently prevented thermal aggregation of citrate synthase. These results indicate that Snz1 and NTF2 possess molecular chaperone activity similar to sHsps, even though there is no ${\alpha}$-crystalline domain in their sequences.

Salt-Induced Protein Precipitation in Aqueous Solution: Single and Binary Protein Systems

  • Kim, Sang-Gon;Bae, Young-Chan
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.53-61
    • /
    • 2003
  • A molecular-thermodynamic model is developed for the salt-induced protein precipitation. The protein molecules interact through four intermolecular potentials. An equation of state is derived based on the statistical mechanical perturbation theory with the modified Chiew's equation for the fluid phase, Young's equation for the solid phase as the reference system and a perturbation based on the protein-protein effective two body potential. The equation of state provides an expression for the chemical potential of the protein. In a single protein system, the phase separation is represented by fluid-fluid equilibria. The precipitation behaviors are simulated with the partition coefficient at various salt concentrations and degree of pre-aggregation effect for the protein particles. In a binary protein system, we regard the system as a fluid-solid phase equilibrium. At equilibrium, we compute the reduced osmotic pressure-composition diagram in the diverse protein size difference and salt concentrations.

Role of post-translational modifications on the alpha-synuclein aggregation-related pathogenesis of Parkinson's disease

  • Yoo, Hajung;Lee, Jeongmin;Kim, Bokwang;Moon, Heechang;Jeong, Huisu;Lee, Kyungmi;Song, Woo Jeung;Hur, Junho K.;Oh, Yohan
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.323-335
    • /
    • 2022
  • Together with neuronal loss, the existence of insoluble inclusions of alpha-synuclein (α-syn) in the brain is widely accepted as a hallmark of synucleinopathies including Parkinson's disease (PD), multiple system atrophy, and dementia with Lewy body. Because the α-syn aggregates are deeply involved in the pathogenesis, there have been many attempts to demonstrate the mechanism of the aggregation and its potential causative factors including post-translational modifications (PTMs). Although no concrete conclusions have been made based on the previous study results, growing evidence suggests that modifications such as phosphorylation and ubiquitination can alter α-syn characteristics to have certain effects on the aggregation process in PD; either facilitating or inhibiting fibrillization. In the present work, we reviewed studies showing the significant impacts of PTMs on α-syn aggregation. Furthermore, the PTMs modulating α-syn aggregation-induced cell death have been discussed.