• Title/Summary/Keyword: Molecular Simulation

Search Result 833, Processing Time 0.028 seconds

Phase Separation of Lennard-Jones Particles Using Molecular Dynamics and Brownian Dynamics Simulations

  • Jeong, Ji-Yun;Lee, Ju-Min;Kim, Jun-Su
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.169-182
    • /
    • 2014
  • 이 연구에서는 Lennard-Jones (LJ) particle을 이용하여 상분리 현상을 이해하기 위한 컴퓨터 시뮬레이션 연구를 수행하였다. 초기에 균일하게 분포되어 있는 LJ 입자들을 시뮬레이션 하면 상대적으로 dense phase와 dilute phase로 상분리 현상이 일어나게 된다. 상분리 현상의 첫 번째 단계를 핵 생성 (nucleation) 이라고 한다. 본 연구에서는 Brownian Dynamics (BD) Simulation과 Molecular Dynamics (MD) Simulation을 이용하여 상평형 그림을 구하고 초기에 일어나는 LJ 입자들의 nucleation rates를 구하였다.

  • PDF

Molecular dynamics simulation of ultra-low energy ion implantation for GSI device technology development (GSI소자 개발을 위한 극 저 에너지 이온 주입에 대한 분자 역학 시뮬레이션)

  • 강정원;손명식;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.3
    • /
    • pp.18-27
    • /
    • 1998
  • Molecular dynamicsinvestigations of ion implantation considering point defect generation were performed with ion energies in the range of ~1keV, Simulation starts perfect diamond cubic lattice site. Stillinger-Weber potential and ZBL potential were used to calculate forces between atoms. We have simulated slowing-down of ion velocity, ion trajectory and coupled-coing between ion and silicon. We also discussed distribution of point defect using rdial distribution function. We found that interstitial produced by ion bombardment mainly formed interstitial cluster.

  • PDF

Nano Mechanics Analysis of Dislocation Nucleation and Interaction (전위의 생성 및 상호작용에 관한 나노 역학 해석)

  • Lee, Young-Min;Kim, Sung-Youb;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.537-541
    • /
    • 2004
  • Molecular dynamics simulation of nanolithography by AFM is conducted to study nucleation of various defects, and their subsequent development and interactions as well. During nanolithography via AFM, dislocation loops are emitted along the top surface, and resourceful defect interactions such as, formation of voids chain via the motion of a jog, and creations of extended nodes and Lomer-Cottrell Lock are observed.

  • PDF

Verification of Kinetic Theoretical Prediction of Diffusion-influenced Reversible

  • Yang, Min O;Sin, Guk Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.93-96
    • /
    • 2000
  • A diffusion-influenced pseudo-first order reversible reaction A + B ⇔C + B is investigated by the molecular dynamics (MD) simulation method. Theoretical finding that the temporal evolution of reactants [conditional probabilities] in the reversible system can be expressed by the irreversible survival probability with an effective rate parameter is confirmed even in the presence of solvent particles. We carry out molecular dynamics simulations for both the irreversible and the reversible cases to evaluate the survival and the conditional probabilities for each cases. When the resultant irreversible survival probability is inserted into the proposed relation, the conditional probabilities given by the simulation are exactly reproduced.

Leucine Zipper as a Fine Tuner for the DNA Binding; Revisited with Molecular Dynamics Simulation of the Fos-Jun bZIP Complex

  • 최용훈;양철학;김현원;정선호
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1319-1322
    • /
    • 1999
  • Leucine zipper dynamically tunes the degree of bifurcation of the DNA binding segments in the basic region of the Fos-Jun bZIP complex. Molecular dynamics simulation indicated that site-specific mutagenesis of conserved leucine residues inside the leucine zipper domain caused the change of dynamic behavior of the basic region, and efficient DNA binding occurs only within a certain range of distance between the two DNA binding segments in the basic region. Distribution of α-helices in the hinge region is also suggested to influence the bifurcation of the DNA binding segments.

Review on the Computer Simulation Tools for Polymeric Membrane Researches (고분자 분리막 연구를 위한 전산모사 도구 소개)

  • Choi, Chan Hee;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.242-251
    • /
    • 2020
  • Computer simulation tools mainly used for polymer materials and polymeric membranes are divided into various fields depending on the size of the object to be simulated and the time to be simulated. The computer simulations introduced in this review are classified into three categories: Quantum mechanics (QM), molecular dynamics (MD), and mesoscale modeling, which are mainly used in computational material chemistry. The computer simulation used in polymer research has different research target for each kind of computational simulation. Quantum mechanics deals with microscopic phenomena such as molecules, atoms, and electrons to study small-sized phenomena, molecular dynamics calculates the movement of atoms and molecules calculated by Newton's equation of motion when a potential or force of is given, and mesoscale simulation is a study to determine macroscopically by reducing the computation time with large molecules by forming beads by grouping atoms together. In this review, various computer simulation programs mainly used for polymers and polymeric membranes divided into the three types classified above will be introduced according to each feature and field of use.

Molecular Dynamics Simulations of the OSS2 Model for Water and Oxonium Ion Monomers, and Protonated Water Clusters

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.107-111
    • /
    • 2002
  • The OSS2 (Oj?me-Shavitt-Singer 2)[L. Oj?me et al., J. Chem. Phys. 109, 5547 (1998)] model for the solvated proton in water is examined for $H_2O,\;H_3O^+,\;H_5O_2^+,\;H_7O_3^+,\;and\;H_9O_4^-$ by molecular dynamics (MD) simulations. The equilibrium molecular geometries and energies obtained from MD simulations at 5.0 and 298.15 K agree very well with the optimized calculations.

FLUORESCENCE DEPOLARIZATION IN DIFFERENT MOLECULAR SYSTEMS

  • Kim, Hack-Jin;Kang, Tai-Jong
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1994
  • General features of the fluorescence depolarization are briefly reviewed. Molecular rotations and electronic excitation transports are considered to account for the fluorescence depolarization. Various molecular systems studied by the fluorescence depolarization are described. The FiSrster theory which forms a basis for the energy transfer is revisited. Several theoretical treatments for the fluorescence depolarization in liquid and solid phases such as classical hydrodynamics, probability distribution function, Green's function formalism, molecular dynamics simulation and Monte Carlo methods are introduced.

  • PDF

Molecular Dynamics Simulation on thermodynamic and Structural Properties of Liquid Hydrocarbons : Normal Alkanes

  • Im, Won-Pil;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.852-856
    • /
    • 1994
  • A series of aliphatic hydrocarbons, methane to hexane in the liquid state, are modeled with the molecular mechanical potential parameters treating all hydrogen degrees of freedom explicitly. Thermodynamic properties (heat capacities and heats of vaporization) are calculated from relatively short (20ps) molecular dynamics trajectories. The liquid state structures are also examined through various radial distribution functions. Molecular dynamics simulations reproduce experimentally measured properties within a few percent errors, thus indicate that the present set of all-hydrogen parameters is suitable for simulating macromolecular systems in bulk.

Explicit integration algorithm for fully flexible unit cell simulation with recursive thermostat chains (순환적으로 결합되는 정온기들을 갖는 $N{\sigma}T$ 분자동역학 전산모사에 적용한 외연적 적분기법)

  • Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.512-517
    • /
    • 2007
  • In the previous development of the recursive thermostat chained fully flexible cell molecular dynamics simulation, implicit time integration method such as generalized leapfrog integration is used. The implicit algorithm is very much complicated and not easy to show time reversibility because it is solved by the nonlinear iterative procedure. Thus we develop simple, explicit symplectic time integration formula for the recursive thermostat chained fully flexible unit cell simulation. Uniaxial tension test is performed to verify the present explicit algorithm. We check that the present simulation satisfies the ergodic hypothesis for various values of fictitious mass and coefficient of multiple thermostat system. The proposed method should be helpful to predict mechanical and thermal behavior of nano-scale structure.

  • PDF