• 제목/요약/키워드: Molecular Recognition

검색결과 376건 처리시간 0.031초

Ceramium riosmenae sp. nov. (Ceramiaceae, Rhodophyta): a new complete corticated species on Gracilaria from Baja California Sur, Mexico

  • Won, Boo-Yeon;Cho, Tae-Oh
    • ALGAE
    • /
    • 제26권4호
    • /
    • pp.289-297
    • /
    • 2011
  • Ceramium riosmenae sp. nov. is described from Baja California Sur, Mexico based on morphological and molecular data. The new species is characterized by erect thalli only, penetrating rhizoids on Gracilaria, 7-8 periaxial cells, five cortical initials per periaxial cell, complete cortication throughout, an average of 11-12 segments between branching points, rare adventitious branchlets, and cruciate tetrasporangia. Although C. riosmenae sp. nov. is similar to C. interruptum, C. sinicola, and C. codicola reported from Baja California Sur, Mexico in size and habit, it differs from these species in the number of cortical initials, habit, degree of cortication, host, and the shape of rhizoidal tips. C. riosmenae is separated from C. interruptum with interrupted cortication and four cortical initials from C. sinicola with spins near the apex and incomplete cortication near the base and from C. codicola with bulbous rhizoids on Codium. Our rbcL sequences reveal sufficient sequence divergence (2.4-3.9%) between C. riosmenae and C. interruptum, C. sinicola, and C. codicola to warrant species recognition and to separate C. riosmenae from these species on a phylogenetic tree.

Composite Dependency-reflecting Model for Core Promoter Recognition in Vertebrate Genomic DNA Sequences

  • Kim, Ki-Bong;Park, Seon-Hee
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.648-656
    • /
    • 2004
  • This paper deals with the development of a predictive probabilistic model, a composite dependency-reflecting model (CDRM), which was designed to detect core promoter regions and transcription start sites (TSS) in vertebrate genomic DNA sequences, an issue of some importance for genome annotation. The model actually represents a combination of first-, second-, third- and much higher order or long-range dependencies obtained using the expanded maximal dependency decomposition (EMDD) procedure, which iteratively decomposes data sets into subsets on the basis of dependency degree and patterns inherent in the target promoter region to be modeled. In addition, decomposed subsets are modeled by using a first-order Markov model, allowing the predictive model to reflect dependency between adjacent positions explicitly. In this way, the CDRM allows for potentially complex dependencies between positions in the core promoter region. Such complex dependencies may be closely related to the biological and structural contexts since promoter elements are present in various combinations separated by various distances in the sequence. Thus, CDRM may be appropriate for recognizing core promoter regions and TSSs in vertebrate genomic contig. To demonstrate the effectiveness of our algorithm, we tested it using standardized data and real core promoters, and compared it with some current representative promoter-finding algorithms. The developed algorithm showed better accuracy in terms of specificity and sensitivity than the promoter-finding ones used in performance comparison.

유전자 재조합 Human galectin-3의 발현과 성상 (Expression and characterization of the recombinant human galectin-3)

  • 김병규;우희종
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.547-554
    • /
    • 1997
  • Galectin-3 is known as an animal ${\beta}$-galactoside-binding lectin charicterized with S-type carbohydrate recognition domain. It plays a role in growth, adherence and movement of cells. It is, also, related to the cell transformation and metastasis of tumor cells. In this study, we have expressed and purified recombinant human galectin-3 (rHgalectin-3) using E coli system and asialofetuin affinity chromatography for the future development of monoclonal antibody to Hgalectin-3, which is suggested as the tumor marker for the gastric and thyroid gland cancers. Expressed protein was confirmed as the Hgalectin-3 by immunoblot with cross-reactive murine monoclonal antibody. Lectin activity and specificity of purified protein were, also, confirmed by the competitive inhibition with galectin-3 specific carbohydrate, lactose. Like physiological galectin-3, lectin activity of the molecule was not changed in nonreduced condition. Dimer formation, furthermore, was observed at high concentration of the protein even in the reduced condition, which is well known in physiological galectin-3. These results showed purified rHgalectin-3 has the same activity and molecular nature compared to the physiological galectin-3.

  • PDF

Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses

  • Park, Jong-Su;Ryu, Jae-Ho;Choi, Tae-Ik;Bae, Young-Ki;Lee, Suman;Kang, Hae Jin;Kim, Cheol-Hee
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.750-755
    • /
    • 2016
  • Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.

Germ Tube Formation of Ascospores of Two Terrestrial Higher Ascomycetes, Hypoxylon mammatum and H. truncatum

  • Lee, Yang-Soo;Han, Sang-Sub;Shin, Jong-Ho;Lee, Young-Mi;Song, Bong-Keun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권4호
    • /
    • pp.10-16
    • /
    • 2000
  • Two wood decay ascomycetes fungi identified as Hypoxylon mammatum and H. truncatum were isolated from backyard of Korea Research Institute of Chemical Technology (KRICT) in Korea. Hypoxylon truncatum is newly recorded as a wood degrader in Korea. Unusual germination mechanisms of ascospores in H. mammatum and H. truncatum are described and illustrated. The differences between two species were noticed on the process of germ tube formation. In the process of germ tube formation, the fast movement to pigmented ascospores activated from their perispores was termed as spore eclosion that was only found in H. mammatum. This sophisticated recognition mechanism indicated the existence of specific eclosion and germ tube formation due to the composition of cell wall layers and their preferable host derive, based on examined two species under a genus. The observation on present study postulates different composition of wall layers of ascospore and different nutrient composition for germination.

  • PDF

Versatilities of Calix[4]pyrrole Based Anion Receptors

  • Lee, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.768-778
    • /
    • 2011
  • Calixpyrroles and related macrocycles are non-planer synthetic anion receptors that have attracted considerable attentions in recent years. Although the synthesis of calix[4]pyrrole (known as meso-octamethylporphyrinogen) was reported more than 100 years ago, the anion binding properties were first discovered in 1996. The simple calix[4]pyrroles can be synthesized in single step in high yield by condensation of pyrrole with acetone. The compounds showed preferential binding for halide anions including fluoride, phosphate, carboxylate, and chloride in organic media. Efforts to improve the anion affinity of calix[4]pyrrole and to enhance its selectivity have led to the synthesis of a variety of new calixpyrrole derivatives. Among the various modifications, introduction of straps on one side of the calix[4]pyrroles are the most effective. Incorporation of aromatic rings other than pyrroles also exhibited interesting binding behaviour. Introduction of signalling units as part of the strapping element enable to detect the anions on chromogenic or fluorogenic fashion. Finding of the anion transport properties across the membrane and cytotoxic effects of the calix[4]pyrroles open new window for calixpyrrole-related research. The polymer-incorporated systems have also been employed as anion complexants in solvent-solvent extraction. These old, yet easy-to-make macrocycles have well advanced more recently with the discovery of the ion-pair complexation properties. In this review, the synthetic developments and anion binding properties of calixpyrroles for the last decades will be discussed and will cover the advances in calixpyrrole chemistry.

Stimulation of Oligonucleotide-Directed Gene Correction by Redβ Expression and MSH2 Depletion in Human HT1080 Cells

  • Xu, Ke;Stewart, A. Francis;Porter, Andrew C.G.
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.33-39
    • /
    • 2015
  • The correction of disease-causing mutations by single-strand oligonucleotide-templated DNA repair (ssOR) is an attractive approach to gene therapy, but major improvements in ssOR efficiency and consistency are needed. The mechanism of ssOR is poorly understood but may involve annealing of oligonucleotides to transiently exposed single-stranded regions in the target duplex. In bacteria and yeast it has been shown that ssOR is promoted by expression of $Red{\beta}$, a single-strand DNA annealing protein from bacteriophage lambda. Here we show that $Red{\beta}$ expression is well tolerated in a human cell line where it consistently promotes ssOR. By use of short interfering RNA, we also show that ssOR is stimulated by the transient depletion of the endogenous DNA mismatch repair protein MSH2. Furthermore, we find that the effects of $Red{\beta}$ expression and MSH2 depletion on ssOR can be combined with a degree of cooperativity. These results suggest that oligonucleotide annealing and mismatch recognition are distinct but interdependent events in ssOR that can be usefully modulated in gene correction strategies.

Pristimerin Inhibits Inducible Nitric Oxide Synthase Expression Induced by TLR Agonists

  • Kim, Su-Yeon;Heo, Sung-Hye;Park, Sin-Aye;Youn, Hyung-Sun
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.60-65
    • /
    • 2019
  • Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRR) operating in the innate immunity. TLRs have the ability to recognize relatively conserved microbial components, which are generally referred to as pathogen-associated molecular patterns (PAMPs). The activation of TLRs signaling leads to the activation of $NF-{\kappa}B$ and the expression of pro-inflammatory gene products such as cytokines and inducible nitric oxide synthase (iNOS). To evaluate the therapeutic potential of pristimerin, which is a naturally occurring triterpenoid compound from Celastraceae plants, iNOS expression induced by MALP-2 (TLR2 and TLR6 agonist), Poly[I:C] (TLR3 agonist), or LPS (TLR4 agonist) were examined. Pristimerin suppressed the iNOS expression induced by MALP-2, Poly[I:C], or LPS. These results suggest that pristimerin can modulate TLRs signaling pathways leading to decreased inflammatory gene expression.

Dehydrocostus Lactone Suppresses the Expression of iNOS Induced by TLR Agonists

  • Kim, Su Yeon;Heo, Sunghye;Kim, Seung Han;Kwon, Minji;Park, Sin-Aye;Youn, Hyung-Sun
    • 대한의생명과학회지
    • /
    • 제25권3호
    • /
    • pp.267-274
    • /
    • 2019
  • Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRR) to recognize pathogen-associated molecular patterns (PAMPs). PAMPs stimulate TLRs to initiate specific immunoactivity. The activation of TLRs signaling leads to the expression of pro-inflammatory gene products such as cytokines and inducible nitric oxide synthase (iNOS). To evaluate the therapeutic potential of dehydrocostus lactone (DHL), which is a natural sesquiterpene lactone derived from various medicinal plants, iNOS expression induced by LPS (TLR4 agonist), MALP-2 (TLR2 and TLR6 agonist), or Poly[I:C] (TLR3 agonist) were examined. DHL suppressed the iNOS expression induced by LPS, MALP-2, or Poly[I:C]. DHL also inhibited nitrite production induced by LPS, MALP-2, or Poly[I:C]. These results suggest that DHL can modulate TLRs signaling pathways resulting in anti-inflammatory effect.

Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function

  • Lee, Chang-Hee;Chun, Taehoon
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.