DOI QR코드

DOI QR Code

Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses

  • Park, Jong-Su (Department of Biology, Chungnam National University) ;
  • Ryu, Jae-Ho (Department of Biology, Chungnam National University) ;
  • Choi, Tae-Ik (Department of Biology, Chungnam National University) ;
  • Bae, Young-Ki (Comparative Biomedicine Research Branch, National Cancer Center) ;
  • Lee, Suman (Division of Structural and Functional Genomics, Center for Genome Science, National Research Institute of Health) ;
  • Kang, Hae Jin (Department of Biology, Chungnam National University) ;
  • Kim, Cheol-Hee (Department of Biology, Chungnam National University)
  • Received : 2016.07.12
  • Accepted : 2016.10.12
  • Published : 2016.10.31

Abstract

Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.

Keywords

References

  1. Avdesh, A., Martin-Iverson, M.T., Mondal, A., Chen, M., Askraba, S., Morgan, N., Lardelli, M., Groth, D.M., Verdile, G., and Martins, R.N. (2012). Evaluation of color preference in zebrafish for learning and memory. J. Alzheimers. Dis. 28, 459-469. https://doi.org/10.3233/JAD-2011-110704
  2. Bowmaker, J.K. (2008). Evolution of vertebrate visual pigments. Vision Res. 48, 2022-2041. https://doi.org/10.1016/j.visres.2008.03.025
  3. Fadool, J.M., and Dowling, J.E. (2008). Zebrafish: a model system for the study of eye genetics. Prog. Retin. Eye Res. 27, 89-110. https://doi.org/10.1016/j.preteyeres.2007.08.002
  4. Gerkema, M.P., Davies, W.I.L., Foster, R.G., Menaker, M., and Hut, R.a (2013). The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc. Biol. Sci. 280, 20130508. https://doi.org/10.1098/rspb.2013.0508
  5. Glass, A.S., and Dahm, R. (2004). The zebrafish as a model organism for eye development. Ophthalmic Res. 36, 4-24. https://doi.org/10.1159/000076105
  6. Goldsmith, P., and Harris, W.A. (2003). The zebrafish as a tool for understanding the biology of visual disorders. Semin. Cell Dev. Biol. 14, 11-18. https://doi.org/10.1016/S1084-9521(02)00167-2
  7. Gronskov, K., Ek, J., and Brondum-Nielsen, K. (2007). Oculocutaneous albinism. Orphanet J. Rare Dis. 2, 43. https://doi.org/10.1186/1750-1172-2-43
  8. Jacobs, G.H. (2009). Evolution of colour vision in mammals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 2957-2967. https://doi.org/10.1098/rstb.2009.0039
  9. Joselevitch, C., and Kamermans, M. (2009). Retinal parallel pathways: Seeing with our inner fish. Vision Res. 49, 943-959. https://doi.org/10.1016/j.visres.2008.07.019
  10. Lee, S.H., Lee, M.S., Choi, T.I., Hong, H., Seo, J.Y., Kim, C.H., and Kim, J. (2016). MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Sci. Rep. 6, 27284. https://doi.org/10.1038/srep27284
  11. Liu, N., Kong, X.D., Shi, H.R., Wu, Q.H., and Jiang, M. (2014). Tyrosinase gene mutations in the Chinese Han population with OCA1. Genet. Res. (Camb). 96, e14. https://doi.org/10.1017/S0016672314000160
  12. LoBue, V., and DeLoache, J.S. (2011). Pretty in pink: The early development of gender-stereotyped colour preferences. Br. J. Dev. Psychol. 29, 656-667. https://doi.org/10.1111/j.2044-835X.2011.02027.x
  13. May, M., Hwang, K.-S., Miles, J., Williams, C., Niranjan, T., Kahler, S.G., Chiurazzi, P., Steindl, K., Van, P.J., Spek, D., et al. (2015). ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons. Hum. Mol. Genet. 24, 4848-4861. https://doi.org/10.1093/hmg/ddv208
  14. Miller, A.C., Voelker, L.H., Shah, A.N., and Moens, C.B. (2015). Neurobeachin is required postsynaptically for electrical and chemical synapse formation. Curr. Biol. 25, 16-28. https://doi.org/10.1016/j.cub.2014.10.071
  15. Nawrocki, L., BreMiller, R., Streisinger, G., and Kaplan, M. (1985). Larval and adult visual pigments of the zebrafish, Brachydanio rerio. Vision Res. 25, 1569-1576. https://doi.org/10.1016/0042-6989(85)90127-0
  16. Orefice, L.L., Zimmerman, A.L., Chirila, A.M., Sleboda, S.J., Head, J.P., and Ginty, D.D. (2016). Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs article peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell 166, 299-313. https://doi.org/10.1016/j.cell.2016.05.033
  17. Peeters, B.W.M.M., Moeskops, M., and Veenvliet, A.R.J. (2016). Color preference in Danio rerio: effects of age and anxiolytic treatments. Zebrafish 13, 330-334. https://doi.org/10.1089/zeb.2015.1150
  18. Richendrfer, H., Pelkowski, S.D., Colwill, R.M., and Creton, R. (2012). On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav. Brain Res. 228, 99-106. https://doi.org/10.1016/j.bbr.2011.11.041
  19. Robertson, D.S., McKenna, M.C., Toon, O.B., Hope, S., and Lillegraven, J.A. (2004). Survival in the first hours of the cenozoic. Bull. Geol. Soc. Am. 116, 760-768. https://doi.org/10.1130/B25402.1
  20. Singh, A.P., and Nusslein-Volhard, C. (2015). Zebrafish stripes as a model for vertebrate colour pattern formation. Curr. Biol. 25, R81-R92. https://doi.org/10.1016/j.cub.2014.11.013
  21. Sugimoto, M., Yuki, M., Miyakoshi, T., and Maruko, K. (2005). The influence of long-term chromatic adaptation on pigment cells and striped pigment patterns in the skin of the zebrafish,Danio rerio. J. Exp. Zool. Part A Comp. Exp. Biol. 303A, 430-440. https://doi.org/10.1002/jez.a.177
  22. Sung, Y.H., Kim, J.M., Kim, H.T., Lee, J., Jeon, J., Jin, Y., Choi, J.H., Ban, Y.H., Ha, S.J., Kim, C.H., et al. (2014). Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res. 24, 125-131. https://doi.org/10.1101/gr.163394.113

Cited by

  1. Effects of alprazolam treatment on anxiety-like behavior induced by color stimulation in adult zebrafish 2018, https://doi.org/10.1016/j.pnpbp.2017.08.025
  2. Color Processing in Zebrafish Retina vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00327
  3. Divergent action of fluoxetine in zebrafish according to responsivity to novelty vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-32263-y
  4. Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and Traditional Chinese Medicine (TCM) vol.14, pp.1, 2018, https://doi.org/10.1186/s12993-018-0145-8
  5. Zebrafish knockout of Down syndrome gene, DYRK1A , shows social impairments relevant to autism vol.8, pp.1, 2016, https://doi.org/10.1186/s13229-017-0168-2
  6. Behavioral Impairments and Oxidative Stress in the Brain, Muscle, and Gill Caused by Chronic Exposure of C70 Nanoparticles on Adult Zebrafish vol.20, pp.22, 2016, https://doi.org/10.3390/ijms20225795
  7. 하수처리시설 방류수 내 잔류 향정신성 의약품의 독성평가를 위한 zebrafish의 행동성 변화 연구 vol.35, pp.6, 2016, https://doi.org/10.15681/kswe.2019.35.6.574
  8. An Innate Color Preference Displayed by Xenopus Tadpoles Is Persistent and Requires the Tegmentum vol.14, pp.None, 2016, https://doi.org/10.3389/fnbeh.2020.00071
  9. Nicastrin Deficiency Induces Tyrosinase-Dependent Depigmentation and Skin Inflammation vol.140, pp.2, 2016, https://doi.org/10.1016/j.jid.2019.07.702
  10. A Novel Function of the Lysophosphatidic Acid Receptor 3 (LPAR3) Gene in Zebrafish on Modulating Anxiety, Circadian Rhythm Locomotor Activity, and Short-Term Memory vol.21, pp.8, 2016, https://doi.org/10.3390/ijms21082837
  11. CPPF, A Novel Microtubule Targeting Anticancer Agent, Inhibits the Growth of a Wide Variety of Cancers vol.21, pp.13, 2020, https://doi.org/10.3390/ijms21134800
  12. Method Standardization for Conducting Innate Color Preference Studies in Different Zebrafish Strains vol.8, pp.8, 2016, https://doi.org/10.3390/biomedicines8080271
  13. Duplicated dnmt3aa and dnmt3ab DNA Methyltransferase Genes Play Essential and Non-Overlapped Functions on Modulating Behavioral Control in Zebrafish vol.11, pp.11, 2016, https://doi.org/10.3390/genes11111322
  14. Colored-Light Preference in Zebrafish ( Danio rerio ) vol.18, pp.4, 2016, https://doi.org/10.1089/zeb.2020.1977
  15. Innate visual discrimination abilities of zebrafish larvae vol.193, pp.None, 2016, https://doi.org/10.1016/j.beproc.2021.104534
  16. CRISPR/Cas9-mediated generation of biallelic F0 anemonefish (Amphiprion ocellaris) mutants vol.16, pp.12, 2016, https://doi.org/10.1371/journal.pone.0261331
  17. Toxicity impact of hydrogen peroxide on the fate of zebrafish and antibiotic resistant bacteria vol.302, pp.no.pb, 2022, https://doi.org/10.1016/j.jenvman.2021.114072