• 제목/요약/키워드: Molecular Marker

검색결과 1,035건 처리시간 0.03초

Sox12 Is a Cancer Stem-Like Cell Marker in Hepatocellular Carcinoma

  • Zou, Song;Wang, Chen;Liu, Jiansheng;Wang, Qun;Zhang, Dongdong;Zhu, Shengnan;Xu, Shengyuan;Kang, Mafei;He, Shaozhong
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.847-854
    • /
    • 2017
  • Recent studies on molecular carcinogenesis suggest that the chemo-resistance of some cancers is largely due to presence of cancer stem cells (CSCs), which affect the chemotherapy outcome for hepatocellular carcinoma (HCC). However, currently no consensus on a CSC phenotype in HCC has been obtained. Here, we examined Sox12 as a novel CSC marker in HCC. Sox12+ versus Sox12- cells were purified from HCC cell lines. The Sox12+ cells were compared with Sox12- HCC cells for tumor sphere formation, chemo-resistance, tumor formation after serial adoptive transplantations in nude mice, and the frequency of developing distal metastasis. We found that compared to Sox12- HCC cells, Sox12+ HCC cells generated significantly more tumor spheres in culture, were more chemo-resistant to cisplatin, were detected in circulation more frequently, and formed distal tumor more frequently. Moreover, Sox12 appeared to functionally contribute to the stemness of HCC cells. Thus, we conclude that Sox12 may be a novel marker for enriching CSCs in HCC.

CCNA1 Promoter Methylation: a Potential Marker for Grading Papanicolaou Smear Cervical Squamous Intraepithelial Lesions

  • Chujan, Suthipong;Kitkumthorn, Nakarin;Siriangkul, Sumalee;Mutirangura, Apiwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7971-7975
    • /
    • 2014
  • Background: From our previous study, we established that cyclin A1 (CCNA1) promoter methylation is strongly correlated with multistep progression of HPV-associated cervical cancer, suggesting potential use as a diagnostic maker of disease. Objectives: The purpose of the present study was to assess the prevalence of CCNA1 promoter methylation in residual cervical cells isolated from liquid-based cytology that underwent hrHPV DNA screening for cervical cancer, and then to evaluate this marker for diagnostic accuracy using parameters like sensitivity, specificity, predictive values and likelihood ratio. Methods: In this retrospective study, histopathology was used as the gold standard method with specimens separated into the following groups: negative (n=31), low-grade squamous intraepithelial lesions (LSIL, n=34) and high-grade squamous intraepithelial lesions or worse (HSIL+, n=32). The hrHPV was detected by Hybrid Capture 2 (HC2) and CCNA1 promoter methylation was examined by CCNA1 duplex methylation specific PCR. Results: The results showed the frequencies of CCNA1 promoter methylation were 0%, 5.88% and 83.33%, while the percentages of hrHPV were 66.67%, 82.35% and 100% in the negative, LSIL and HSIL+ groups, respectively. Although hrHPV infection showed high frequency in all three groups, it could not differentiate between the different groups and grades of precancerous lesions. In contrast, CCNA1 promoter methylation clearly distinguished between negative/LSIL and HSIL+, with high levels of all statistic parameters. Conclusion: CCNA1 promoter methylation is a potential marker for distinguishing between histologic negative/LSIL and HSIL+using cervical cytology samples.

Molecular Mechanism of Male Germ Cell Apoptosis after Busulfan Treatment

  • Kim, Jin-Hoi
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.63-65
    • /
    • 2002
  • Identification of spermatogonial stem cell-specific surface molecules is important in understanding the molecular mechanisms underlying the maintenance and differentiation of these cells. We have found that spermatogonia from busulfan treated mice expressed an autoantigen that distinguishes between undifferentiated and differentiated spermatogonia. Four to six weeks after busulfan treatment, germ cells located in the basal compartment of seminiferous epithelium show isotype-specific IgG deposits that form due to autoimmunity. Before busulfan treatment, the level of testicular IgG was very low but IgG levels began to increase after week 4 and peaked at week 6. When cells from the busulfan treated testis were analyzed using laser scanning cytomeoy (LSC), the frequency of cells positive for IgG deposits, 6-integrin, and 1-integrin were 16.5${\pm}$3.8%, 11.8${\pm}$2.6%, and 9.0${\pm}$ 1.4%, respectively. Immunofluorescent staining suggested that most, if not all of the cells with IgG-deposits isolated from a laminin-coated dish, were also positive for a spermatogonial stem cell marker \ulcorner6-integrins as well as for a germ cell-specific marker TRA 98. We determined serum and intratesticular IgG levels and the soundness of seminiferous tubule basement membrane from busulfan treated mice using electron microscopy, in order to study the mechanism responsible for IgG deposits in spermatogonia. We found that the basement membranes of seminiferous tubules from busulfan treated mice were severely impaired when compared to those of normal adult, neonates and w/wv mice. Furthermore, new blood cells were observed in the surface of the damaged basement membrane along the seminiferous tubules. These results suggest that the IgG in spermatogonial stem cells accumulates from circulating blood through the impaired basement membranes induced by busulfan treatment. Taken together, our study suggests that IgG can be used as a new marker for undifferentiated spermatogonia cells.

  • PDF

Development of a Molecular Marker for Fruiting Body Pattern in Auricularia auricula-judae

  • Yao, Fang-Jie;Lu, Li-Xin;Wang, Peng;Fang, Ming;Zhang, You-Min;Chen, Ying;Zhang, Wei-Tong;Kong, Xiang-Hui;Lu, Jia;Honda, Yoichi
    • Mycobiology
    • /
    • 제46권1호
    • /
    • pp.72-78
    • /
    • 2018
  • The fruiting body pattern is an important agronomic trait of the edible fungus Auricularia auricula-judae, and an important breeding target. There are two types of fruiting body pattern: the cluster type and the chrysanthemum type. We identified the fruiting body pattern of 26 test strains, and then constructed two different near-isogenic pools. Then, we developed sequence characterized amplified region (SCAR) molecular markers associated with the fruiting body pattern based on sequence-related amplified polymorphism (SRAP) markers. Ten different bands (189-522 bp) were amplified using 153 pairs of SRAP primers. The SCAR marker "SCL-18" consisted of a single 522-bp band amplified from the cluster-type strains, but not the chrysanthemum strains. This SCAR marker was closely associated with the cluster-type fruiting body trait of A. auricula-judae. These results lay the foundation for further research to locate and clone genes controlling the fruiting body pattern of A. auricula-judae.

Adjuvant role of macrophages in stem cell-induced cardiac repair in rats

  • Lim, Soo yeon;Cho, Dong Im;Jeong, Hye-yun;Kang, Hye-jin;Kim, Mi Ra;Cho, Meeyoung;Kim, Yong Sook;Ahn, Youngkeun
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.1.1-1.10
    • /
    • 2018
  • Bone marrow-derived mesenchymal stem cells (BMMSCs) are used extensively for cardiac repair and interact with immune cells in the damaged heart. Macrophages are known to be modulated by stem cells, and we hypothesized that priming macrophages with BMMSCs would enhance their therapeutic efficacy. Rat bone marrow-derived macrophages (BMDMs) were stimulated by lipopolysaccharide (LPS) with or without coculture with rat BMCs. In the LPS-stimulated BMDMs, induction of the inflammatory marker iNOS was attenuated, and the anti-inflammatory marker Arg1 was markedly upregulated by coculture with BMMSCs. Myocardial infarction (MI) was induced in rats. One group was injected with BMMSCs, and a second group was injected with MIX (a mixture of BMMSCs and BMDMs after coculture). The reduction in cardiac fibrosis was greater in the MIX group than in the BMC group. Cardiac function was improved in the BMMSC group and was substantially improved in the MIX group. Angiogenesis was better in the MIX group, and anti-inflammatory macrophages were more abundant in the MIX group than in the BMMSC group. In the BMMSCs, interferon regulatory factor 5 (IRF5) was exclusively induced by coculture with macrophages. IRF5 knockdown in BMMSCs failed to suppress inflammatory marker induction in the macrophages. In this study, we demonstrated the successful application of BMDMs primed with BMMSCs as an adjuvant to cell therapy for cardiac repair.

Molecular discrimination of Panax ginseng cultivar K-1 using pathogenesis-related protein 5 gene

  • Wang, Hongtao;Xu, Fengjiao;Wang, Xinqi;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.482-487
    • /
    • 2019
  • Background: The mixed-cultivation of different Panax ginseng cultivars can cause adverse effects on stability of yield and quality. K-1 is a superior cultivar with good root shape and stronger disease resistance. DNA markers mined from functional genes are clearly desirable for K-1, as they may associate with major traits and can be used for marker-assisted selection to maintain the high quality of Korean ginseng. Methods: Five genes encoding pathogenesis-related (PR) proteins of P. ginseng were amplified and compared for polymorphism mining. Primary, secondary, and tertiary structures of PR5 protein were analyzed by ExPASy-ProtParam, PSSpred, and I-TASSER methods, respectively. A coding single nucleotide polymorphism (SNP)-based specific primer was designed for K-1 by introducing a destabilizing mismatch within the 3' end. Allele-specific polymerase chain reaction (PCR) and real-time allele-specific PCR assays were conducted for molecular discrimination of K-1 from other cultivars and landraces. Results: A coding SNP leading to the modification of amino acid residue from aspartic acid to asparagine was exploited in PR5 gene of K-1 cultivar. Bioinformatics analysis showed that the modification of amino acid residue changed the secondary and tertiary structures of the PR5 protein. Primer KSR was designed for specific discrimination of K-1 from other ginseng cultivars and landraces. The developed real-time allele-specific PCR assay enabled easier automation and accurate genotyping of K-1 from a large number of ginseng samples. Conclusion: The SNP marker and the developed real-time allele-specific PCR assay will be useful not only for marker-assisted selection of K-1 cultivar but also for quality control in breeding and seed programs of P. ginseng.

Molecular Authentication of Pinelliae Tuber from its adulterants by the analysis of DNA barcodes, matK and rbcL genes (matK와 rbcL DNA 바코드 분석을 통한 반하(半夏) 및 반하(半夏) 유사 한약재 유전자 감별)

  • Lee, Young Mi;Moon, Byeong Cheol;Ji, Yunui;Kim, Wook Jin;Kim, Ho Kyoung
    • The Korea Journal of Herbology
    • /
    • 제28권6호
    • /
    • pp.53-58
    • /
    • 2013
  • Objectives : Pinelliae Tuber has been used as a typical unauthentic herbal medicines. Due to the morphological similarity between Pinelliae Tuber and adulterants, the correct authentication is very difficult. Therefore, we introduced DNA barcode to establish a powerful tool for the authentication of Pinelliae Tuner from adulterants. Methods : To obtain DNA barcode regions, genomic DNA was extracted from nineteen specimens of Pinellia ternata, Pinellia pedatisecta, Pinellia tripartita, and Typhonium flagelliforme, and matK and rbcL genes were amplified. For identification of species specific sequences and analysis phylogenetic relationship, a comparative analysis were performed by the ClastalW and UPGMA based on entire sequences of matK and rbcL genes, respectively. Results : In comparison of two DNA barcode sequences, we elucidated the phylogenetic relationship showing distinct four groups depending on species and identified 40 and 20 species specific nucleotides enough to distinguish each species from matK and rbcL gene, respectively. The sequence differences at the corresponding positions were avaliable genetic marker nulceotides to discriminate the correct species among analyzed four species. These results indicated that phylogentic and comparative analysis of matK and rbcL genes are useful genetic markers to authenticate Pinelliae Tubers. Conclusions : The marker nucleotides enough to distinguish P. ternata, P. tripatrita, P. peditisecta, and T. flagelliform, were observed at 40 positions in matK gene and 20 positions in rbcL gene sequence, respectively. These differences can be used to authenticate Pinelliae Tuber from adulterants as well as discriminate each four species.

Development of Marker-free Transgenic Rice for Increasing Bread-making Quality using Wheat High Molecular Weight Glutenin Subunits (HMW-GS) Gene (밀 고분자 글루테닌 유전자를 이용하여 빵 가공적성 증진을 위한 마커 프리 형질전환 벼의 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • 제23권11호
    • /
    • pp.1317-1324
    • /
    • 2013
  • High-molecular weight glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the wheat grain. We have produced marker-free transgenic rice plants containing a wheat Glu-1Bx7 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using the Agrobacterium-mediated co-transformation method. The Glu-1Bx7-own promoter was inserted into a binary vector for seed-specific expression of the Glu-1Bx7 gene. Two expression cassettes comprised of separate DNA fragments containing only Glu-1Bx7 and hygromycin phosphotransferase II (HPTII) resistance genes were introduced separately to the Agrobacterium tumefaciens EHA105 strain for co-infection. Each EHA105 strain harboring Glu-1Bx7 or HPTII was infected to rice calli at a 3:1 ratio of Glu-1Bx7 and HPTII, respectively. Then, among 216 hygromycin-resistant $T_0$ plants, we obtained 24 transgenic lines with both Glu-1Bx7 and HPTII genes inserted into the rice genome. We reconfirmed integration of the Glu-1Bx7 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the wheat Glu-1Bx7 were stably expressed in the rice $T_1$ seeds. Finally, the marker-free plants harboring only the Glu-1Bx7 gene were successfully screened at the $T_1$ generation.

Development of Molecular Marker for the authentication of Patriniae Radix by the analysis of DNA barcodes (DNA 바코드 분석을 통한 패장 기원종 감별용 분자 마커 개발)

  • Kim, Wook Jin;Ji, Yunui;Lee, Young Mi;Kang, Young Min;Choi, Goya;Kim, Ho Kyoung;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • 제29권6호
    • /
    • pp.45-53
    • /
    • 2014
  • Objectives : Due to the morphological similarity of in the roots of herbal medicine, the official herbal medicine is very difficult to authenticate between the original plants of Patriniae Radix and two adulterant Patrinia species. Therefore, we introduced DNA barcode analysis to establish a powerful tool for the authentication of Patriniae Radix from its adulterants. Methods : To analyze DNA barcode regions, genomic DNA was extracted from twenty-nine specimens of Patrinia scabiosaefolia, Patrinia villosa, Patrinia saniculifolia, and Patrinia rupestris, and internal transcribed spacer 2(ITS2), matK and rbcL genes were amplified. For identification of species specific sequences, a comparative analysis was performed by the ClastalW based on entire sequences of ITS2, matK and rbcL genes, respectively. Results : In comparison of three DNA barcode sequences, we identified 22, 22, and 12 species-specific nucleotides enough to distinguish each four species from ITS2, matK and rbcL gene, respectively. The sequence differences at the corresponding positions were available genetic marker nucleotides to discriminate the correct species among analyzed four species. These results indicated that comparative analysis of ITS2, matK and rbcL genes were useful genetic markers to authenticate Patriniae Radix. Conclusions : The marker nucleotides enough to distinguish P. scabiosaefolia, P. villosa, P. saniculifolia, and P. rupestris, were obtained at 22 SNP marker nucleotides from ITS2 and matK DNA barcode sequences, but they were confirmed at 12 SNP marker nucleotides from rbcL. These differences could be used to authenticate Patriniae Radix from its adulterants as well as discriminating each four species.

Development of a CAPS Marker Derived from the Pg-Actin Gene Sequences and RAPD Markers in Platycodon grandiflorum (도라지에서의 RAPD 마커 분석과 Actin 유전자 염기서열에서 유래한 CAPS 분자표지 개발)

  • Kim, Munhwi;Jeong, Eunah;Jeong, Jeongsu;Kwon, Soontae;Jeon, Ikjo;Jeong, Jeong Hag;Lee, Je Min;Yeam, Inhwa
    • Korean Journal of Plant Resources
    • /
    • 제28권5호
    • /
    • pp.648-655
    • /
    • 2015
  • Balloon flower (Platycodon grandiflorum A. DC.) is a perennial plant of mainly Campanulaceae family, which have been widely used as a food ingredient and herbal medicine in East Asia. Although demands on related products and yearly cultivation area for balloon flower are increasing, diverse fundamental technologies and molecular breeding studies are not very well supported in Platycodons. In this study, 30 random amplification of polymorphic DNA (RAPD) primers were test in an attempt to explore genetic diversities. In addition, sequences information of the actin gene, a well conserved gene encoding a globular protein that forms microfilaments, was retrieved and analyzed. Two actin homologs were recovered; 3.4 kb fragment is a Pg-actin and 1.4 kb fragment is a Pg-actin homolog with 28.6% similarity. We have confirmed that the Pg-actin gene is configured into 4 exons and 3 introns. A single nucleotide polymorphism (SNP), G↔A, was detected on the intron 3, which served as a target for the CAPS marker development. The marker Pg-Actin-Int3 was applied to 32 balloon flower accessions. Balloon flower DNA sequence information generated in this study is expected to contribute to the analysis and molecular breeding and genetic diversity analysis of balloon flowers.