DOI QR코드

DOI QR Code

Development of a Molecular Marker for Fruiting Body Pattern in Auricularia auricula-judae

  • Yao, Fang-Jie (College of Horticulture, Jilin Agricultural University) ;
  • Lu, Li-Xin (Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University) ;
  • Wang, Peng (Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University) ;
  • Fang, Ming (College of Horticulture, Jilin Agricultural University) ;
  • Zhang, You-Min (College of Horticulture, Jilin Agricultural University) ;
  • Chen, Ying (Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University) ;
  • Zhang, Wei-Tong (Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University) ;
  • Kong, Xiang-Hui (Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University) ;
  • Lu, Jia (College of Horticulture, Jilin Agricultural University) ;
  • Honda, Yoichi (Graduate School of Agriculture, Kyoto University)
  • Received : 2017.06.17
  • Accepted : 2018.01.19
  • Published : 2018.03.31

Abstract

The fruiting body pattern is an important agronomic trait of the edible fungus Auricularia auricula-judae, and an important breeding target. There are two types of fruiting body pattern: the cluster type and the chrysanthemum type. We identified the fruiting body pattern of 26 test strains, and then constructed two different near-isogenic pools. Then, we developed sequence characterized amplified region (SCAR) molecular markers associated with the fruiting body pattern based on sequence-related amplified polymorphism (SRAP) markers. Ten different bands (189-522 bp) were amplified using 153 pairs of SRAP primers. The SCAR marker "SCL-18" consisted of a single 522-bp band amplified from the cluster-type strains, but not the chrysanthemum strains. This SCAR marker was closely associated with the cluster-type fruiting body trait of A. auricula-judae. These results lay the foundation for further research to locate and clone genes controlling the fruiting body pattern of A. auricula-judae.

Keywords

References

  1. Yao FJ, Bian YB. Graphic illustration on key cultivation techniques of Auricularia auricular-judae. Beijing: China Agricultural Press; 2011.
  2. Yao FJ, Zhang YM, Lu LX, et al. Research progress on genetics and breeding of Auricularia auriculajudae. J Fungal Res. 2015;13:125-128.
  3. Chen Y, Yao FJ, Zhang YM, et al. Numerical classification of cultivated germplasm of Auricularia auricular-judae. Mycosystema. 2014;33:984-996.
  4. Chen Y, Yao FJ, Zhang YM, Fang M. Study on esterase isozyme of cultivated germplasm on Auricularia auricula-judae (Bull.) Quel. In: The 10th National Academic Symposium on Edible Fungi; 2014 Mar 21-23; Beijing, China. Beijing: Mycological society of China; 2014. p. 75-80.
  5. Wang P, Yao FJ. Studies on germplasm resources evaluation by SSR on Auricularia auricular-judae. In: The 11th Academic Symposium on Medicinal Fungi; 2016 Oct 27-30; Chengdu, China. Beijing: China edible fungi association; 2016.
  6. Chen Y. Studies on numerical classification of germplasm, directional breeding model construction and differential gene expression analysis of degeneration strain by cDNA-AFLP on Auricularia auricular-judae [dissertation]. Changchun: Jilin Agricultural University; 2014.
  7. Chen Y, Yao FJ, Zhang YM, et al. A new Auricularia auricula cultivar 'Jihei 3'. Acta Hortic Sinica. 2014;41:1751-1752.
  8. Fang M, Yao FJ, Wang XE, et al. A new Auricularia auricula cultivar 'Jihei 2'. Acta Hortic Sinica. 2013;40:1215-1216.
  9. Bhagyawant SS. RAPD-SCAR markers: an interface tool for authentication of traits. J Biosci Med. 2016;4:1-9.
  10. Cunha CMS, Hinz RH, Pereira A, et al. A SCAR marker for identifying susceptibility to Fusarium oxysporum f. sp. Cunense in banana. Sci Hortic. 2015;191:108-112. https://doi.org/10.1016/j.scienta.2015.04.038
  11. Khan M, Pan Y, Iqbal J. Development of an RAPD-based SCAR marker for smut disease resistance in commercial sugarcane cultivars of Pakistan. Crop Prot. 2017;94:166-172. https://doi.org/10.1016/j.cropro.2016.12.024
  12. Loftus M, Bouchti KL, Robles C, et al. Use of SCAR marker for cap color in Agaricus bisporus breeding programs. Mush Sci. 2000;15:201-205.
  13. Kong WS, Kim GH, Kim KH, et al. Molecular marker related to fruitbody color of Flammulina velutipes. Mycobiology. 2004;32:6-10. https://doi.org/10.4489/MYCO.2004.32.1.006
  14. Lee CY, Park JE, Lee J, et al. Development of new strains and related SCAR markers for an edible mushroom, Hypsizygus marmoreus. FEMS Microbiol Lett. 2012;327:54-59. https://doi.org/10.1111/j.1574-6968.2011.02458.x
  15. Li DQ, Wang J. Screening of molecular markers associated with degeneration of Volvariella volvacea strains. J Northwest A&F Univ (Nat. Sci. Ed). 2015;43:195-201.
  16. Kim SY, Kim KH, Im CH, et al. Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes. PLoS One. 2014;9:e107207. https://doi.org/10.1371/journal.pone.0107207
  17. Sun J, Bian YB. Slippery scar: a new mushroom disease in Auricularia polytricha. Mycobiology. 2012;40:129-133. https://doi.org/10.5941/MYCO.2012.40.2.129
  18. Li D, Liu Y, Wang P, et al. Development of SCAR markers to determine the mating types of Lepista nuda protoplast monokaryons. Curr Microbiol. 2014;68:536-542. https://doi.org/10.1007/s00284-013-0510-7
  19. Zhao Y, Lin F, Yan SY. Establishment and application of an efficient cross breeding method assisted by molecular markers of Volvariella volvacea. Microbiology China. 2015;42:1165-1174.
  20. Liu GJ. Study on incompatible factor and breeding of Auricularia auricular [dissertation]. Changchun: Jilin Agricultural University; 2011.
  21. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8:4321-4326. https://doi.org/10.1093/nar/8.19.4321
  22. Wang XE. Analysis of Genome and lignocellulose degradation genes and new cultivar breeding of Auricularia auricular [dissertation]. Changchun: Jilin Agricultural University; 2013.
  23. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet. 2001;103:455-461. https://doi.org/10.1007/s001220100570
  24. Lin ZX, Zhang XL, Nie YC, et al. Construction SRAP genetic linkage map in cotton. Chin Sci Bullet. 2003; 15:1676-1679.
  25. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365-386.
  26. Baars JJP, Sonnenberg ASM, Mikosch TSP, et al. Development of a sporeless strain of oyster mushroom Pleurotus ostreatus. Indian J Pharm Sci. 2000;74:588-591.
  27. Chen Y. Study on the diversity of cultured Auricularia auricular germplasm resources and the establishment of core collection [dissertation]. Changchun: Jilin Agricultural University; 2010.
  28. Wan JN. Study on effect and mechanism of small hole-fruiting method on quality of Auricularia auricular [dissertation]. Changchun: Jilin Agricultural University; 2009.
  29. Chang ST, Lin FC. Genetics and breedings of edible mushroom. Beijing: China Agriculture Press; 1997.
  30. Callac P, Moquet F, Imbernon M, et al. Evidence for PPC1 a determinant of the pilei-pellis color of Agaricus bisporus fruiting bodies. Fungal Genet Biol. 1998;23:181-188. https://doi.org/10.1006/fgbi.1998.1035
  31. Moquet F, Desmerger C, Mamoun M, et al. A quantitative trait locus of Agaricus bisporus resistance to Pseudomonas tolaasii is closely linked to natural cap color. Fungal Genet Biol. 1999;28:34-42. https://doi.org/10.1006/fgbi.1999.1157
  32. Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoret Appl Genetics. 1993;85:985-993.

Cited by

  1. Genetic diversity of Lepista nuda (Agaricales, Basidiomycota) in Northeast China as indicated by SRAP and ISSR markers vol.13, pp.8, 2018, https://doi.org/10.1371/journal.pone.0202761
  2. Comparative transcriptome analysis reveals relationship of three major domesticated varieties of Auricularia auricula-judae vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-018-36984-y
  3. Genome Sequence Analysis of Auricularia heimuer Combined with Genetic Linkage Map vol.6, pp.1, 2020, https://doi.org/10.3390/jof6010037
  4. Genetic Diversity and Population Structure of Moroccan Isolates Belong to Alternaria spp. Causing Black Rot and Brown Spot in Citrus vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/9976969
  5. Marker Assisted Selection of Malic-Consuming Saccharomyces cerevisiae Strains for Winemaking. Efficiency and Limits of a QTL’s Driven Breeding Program vol.7, pp.4, 2018, https://doi.org/10.3390/jof7040304
  6. Insights into health-promoting effects of Jew's ear (Auricularia auricula-judae) vol.114, pp.None, 2018, https://doi.org/10.1016/j.tifs.2021.06.017
  7. Analysis of the Genome Sequence of Strain GiC-126 of Gloeostereum incarnatum with Genetic Linkage Map vol.49, pp.4, 2018, https://doi.org/10.1080/12298093.2021.1954321