• Title/Summary/Keyword: Molecular Manufacturing

Search Result 184, Processing Time 0.027 seconds

Effect of ${\gamma}-ray$ Irradiation on Mechanical Properties of Ultra-High Molecular Weight Polyethylene (감마선 조사에 의한 초고분자량 폴리에틸렌의 기계적 특성 변화)

  • Lee, Jong-Dae;Cheong, Seon-Hwan;Choi, Seong-Dae;Kim, Hyun-Mook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.108-114
    • /
    • 2008
  • Uniaxial tension and compression test were conducted on conventional and crosslinked ultra-high molecular polyethylene (UHMWPE) all prepared from the same lot of medical grade GUR 1050. The conventional materials were unirradiated and gamma irradiated with $25kGy{\sim}200kGy$. Gamma irradiated processing was found to significantly impact the crystallinity, and hence the mechanical behavior, of the highly crosslinked UHMWPE. The crystallinity and radiation dose were key predictors of the uniaxial yielding, hardness, plastic flow, and failure properties of conventional and highly crosslinked UHMWPE. The correlation model from experiments would be the basic information to design the liner of artificial joint.

Development of Auto-hydrolysis Method for Preparing Cotton Linter Regenerated Fibers of Textile Fabrics (방직용 재생펄프 제조를 위한 면 린터의 자기가수분해 공정 개발)

  • Sohn, Ha Neul;Park, Hee Jung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.81-88
    • /
    • 2015
  • The molecular weight (MW) and crystallinity of cotton linter need to be controlled to be dissolved well in N-methylmorpholine N-oxide (NMMO) solvent for manufacturing regenerated fibers of clothing fabrics. Electron beam irradiation or sulfuric acid pre-treatment followed by alkaline peroxide bleaching has been used to control MW effectively and to improve brightness of cotton linter. Auto-hydrolysis of cotton linter without electron beam irradiation or chemical pre-treatment was found to be effective as an alternative pre-treatment method. Removal of metal ions, that hampered dissolution of cotton linter by NMMO, was also investigated when the auto-hydrolysis was accompanied with ionic polymers and chelating agent.

Test of the hybrid origin of Broussonetia × kazinoki (Moraceae) in Korea using molecular markers

  • WON, Hyosig
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.4
    • /
    • pp.282-293
    • /
    • 2019
  • Broussonetia × kazinoki Siebold has long been utilized as a major component in the manufacturing of Korean traditional paper, hanji, and has been suggested as a hybrid species of B. papyrifera and B. monoica. By applying three molecular markers, chloroplast (cp) ndhF-rpl32 IGS, a nuclear ribosomal internal transcribed spacer, and the TOPO6 gene, the hybrid origin of B. × kazinoki is tested. As a result, B. × kazinoki in Korea is demonstrated to be a hybrid of B. monoica × B. papyrifera, most likely formed naturally in Korea. The cp haplotypes detected provided information about the origins and genetic diversity of the maternal lineage B. monoica and paternal lineage B. papyrifera. The two nuclear markers were supplemented to each other, leading to the discovery of introgression in Broussonetia.

DLPC LB박막의 전기특성에 관한 연구

  • 이경섭;조수영;오재한;이우선;최충석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.97.1-100
    • /
    • 1998
  • We studied on the ultra thin L- $\alpha$ -DLPC by LB method. The $\pi$ -A isotherm of the L- e -DLPC was measured at the air-water interface varying with the compressing speed and amounts of solutions for spreading. The molecular arrangement of deposited films were evaluated by measuring the absorption with the UV spectrometer. And we made structures of metal(Au)/L- $\alpha$ -DLPC/Metal(Au) and examined electron through L- $\alpha$ -DLPC LB films by means of current-voltage(I- V) measurement

A Study on the molecular structure and molecular weight control of styrene films by plasma polymerization (플라즈마 중합법에 의한 스티렌 박막의 분자 구조 및 분자량 제어에 관한 연구)

  • 김종택;최충양;박종관;박응춘;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.213-219
    • /
    • 1997
  • The plasma polymerized styrene films were prepared by using an inter-electrode capacitively coupled gas-flow-type reactor, and the effects of plasma polymerization condition on the molecular weight distribution were investigated by Fourier Transform Infrared (FT-IR), Pyrolysis Gas Chromatography(PyGC), Differential Scanning Calorimetry(DSC) and Gel Permeation Chromatography(GPC). From the above results, the very cross-linked films different from chemical characteristics of the starting monomer were taken out, and it is realized that the molecular structure, cross linking density, and molecular weight distribution could be controlled by changing the parameters such as deposition pressure, deposition power and gas flow rate. Accordingly, it is suggested that plasma polymerization method performed by inter-electrode capacitively coupled gas-flow-type reactor has good characteristics for manufacturing the functional organic thin films which can be applied in sensors, opto-electric device, photo-resist by changing the polymerization parameters.

  • PDF

Usage of Tobacco Plants for Various Purposes (담배 속 식물의 다양한 활용방안 모색)

  • Um, Yu-Rry;Lee, Moon-Soon;Lee, Yi;Seok, Yeong-Seon
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.33 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Genus Nicotiana has 76 species including N. tabacum. These plants are used not only as a material for cigarette manufacturing but also as ornamental plant, medicinal plant, poisonous substance plant, and bug repellent plant. N. tabacum is used as a main material for cigarette manufacturing with N. rustica. N. sylvestris and N. alata is used as ornamental plants because of their beautiful flowers and N. rustica is used for bug repellent or pesticide because of its high concentration of nicotine. N. glauca, a tree tobacco, is used for bio-fuel production. N. tabacum is used as a popular model plant system for degeneration, regeneration, and transformation. N. benthamiana is also used as a model system for foreign gene expression by agroinfiltration. The transformation ability of tobacco plant is a good target for molecular farming. Hepatitis B virus envelop protein, E. coli heat-labile enterotoxin, diabetes autoantigen, and cholera toxin B subunit were produced using tobacco plants. Secondary metabolites of tobacco include nicotine, anabasine, nornicotine, anatabine, cembranoid, solanesol, linoleic acid, rutin, lignin and sistosterol, and they are used for various medicine productions which cannot be produced by organic synthesis for their complicated structures. In conclusion, we have to understand the applicability of tobacco plant in detail and study to enlarge the usage of the plants.

Material Transfer of MoS2 Wear Debris to Diamond Probe Tip in Nanoscale Wear test using Friction Force Microscopy (마찰력현미경을 이용한 나노스케일 마멸시험 시 다이아몬드 탐침으로의 MoS2 마멸입자 전이현상)

  • Song, Hyunjun;Lim, Hyeongwoo;Seong, Kwon Il;Ahn, Hyo Sok
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.286-293
    • /
    • 2019
  • In friction and wear tests that use friction force microscopy (FFM), the wear debris transfer to the tip apex that changes tip radius is a crucial issue that influences the friction and wear performances of films and coatings with nanoscale thicknesses. In this study, FFM tests are performed for bilayer $MoS_2$ film to obtain a better understanding of how geometrical and chemical changes of tip apex influence the friction and wear properties of nanoscale molecular layers. The critical load can be estimated from the test results based on the clear distinction of the failure area. Scanning electron microscopy and energy-dispersive spectroscopy are employed to measure and observe the geometrical and chemical changes of the tip apex. Under normal loads lower than 1000 nN, the reuse of tips enhances the friction and wear performance at the tip-sample interface as the contact pair changes with the increase of tip radius. Therefore, the reduction of contact pressure due to the increase of tip radius by the transfer of $MoS_2$ or Mo-dominant wear debris and the change of contact pairs from diamond/$MoS_2$ to partial $MoS_2$ or Mo/$MoS_2$ can explain the critical load increase that results from tip reuse. We suggest that the wear debris transfer to the tip apex should be considered when used tips are repeatedly employed to identify the tribological properties of ultra-thin films using FFM.

Analysis of 3-MCPD and 1,3-DCP in Various Foodstuffs Using GC-MS

  • Kim, Wooseok;Jeong, Yun A;On, Jiwon;Choi, Ari;Lee, Jee-yeon;Lee, Joon Goo;Lee, Kwang-Geun;Pyo, Heesoo
    • Toxicological Research
    • /
    • v.31 no.3
    • /
    • pp.313-319
    • /
    • 2015
  • 3-Monochloro-1,2-propanediol (3-MCPD) and 1,3-dichloro-2-propanol (1,3-DCP) are not only produced in the manufacturing process of foodstuffs such as hydrolyzed vegetable proteins and soy sauce but are also formed by heat processing in the presence of fat and low water activity. 3-MCPD exists both in free and ester forms, and the ester form has been also detected in various foods. Free 3-MCPD and 1,3-DCP are classified as Group 2B by the International Agency for Research on Cancer. Although there is no data confirming the toxicity of either compound in humans, their toxicity was evidenced in animal experimentation or in vitro. Although few studies have been conducted, free 3-MCPD has been shown to have neurotoxicity, reproductive toxicity, and carcinogenicity. In contrast, 1,3-DCP only has mutagenic activity. The purpose of this study was to analyze 3-MCPD and 1,3-DCP in various foods using gas chromatography-mass spectrometry. 3-MCPD and 1,3-DCP were analyzed using phenyl boronic acid derivatization and the liquid-liquid extraction method, respectively. The analytical method for 3-MCPD and 1,3-DCP was validated in terms of linearity, limit of detection (LOD), limit of quantitation, accuracy and precision. Consequently, the LODs of 3-MCPD and 1,3-DCP in various matrices were identified to be in the ranges of 4.18~10.56 ng/g and 1.06~3.15 ng/g, respectively.

The Conversion of Ginsenosides by Extrusion Molding (압출성형에 의한 ginsenoside의 변환)

  • Ryu, Jae-Hyung;Li, Chun-Ying;Ahn, Moon-Sub;Kim, Jang-Won;Kang, Wie-Soo;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.114-118
    • /
    • 2008
  • Ginseng treated with several treatment conditions of various acids to search hydrolysates on the basis of increased biological activity and modified structure. In the result of acid treatment, the conversion rate of ginsenoside Rg3, Rk1 and Rg5 was highest when ginseng treated with citric acid. After added citric acid to ginseng extract, boiled at l00$^{\circ}C$ for 1 hour and add enzyme, which is examined change by time. It compared with group which did not treated acid. Two groups became difference according to enzyme but the generation rate of ginsenoside Rg3, Rk1 and Rg5 did not show difference greatly. Also, the generation rate of ginsenoside Rg3, Rk1 and Rg5 by time passes did not show difference. The generation rate of ginsenoside Rg3, Rk1 and Rg5 increased when increased acid concentration, temperature and time. We did exclusion molding to shorten treatment time. In the result of ginseng treated with citric acid of various concentrations at various temperatures as time passes by extrusion molding, the generation rate of ginsenoside Rg3, Rk1 and Rg5 was highest when ginseng treated with 3% citric acid at l60$^{\circ}C$ for 20 minutes. In addition, total saponin amount of ginseng treated with 3% citric acid at 160$^{\circ}C$ for 20 minutes was about 11% higher than ginseng heated at 120$^{\circ}C$ for 3 hours. These results indicated that our exclusion molding process more effective, compared to traditional red ginseng manufacturing process.

Construction of Amylolytic Industrial Brewing Yeast Strain with High Glutathione Content for Manufacturing Beer with Improved Anti-Staling Capability and Flavor

  • Wang, Jin-Jing;Wang, Zhao-Yue;He, Xiu-Ping;Zhang, Bo-Run
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1539-1545
    • /
    • 2010
  • In beer, glutathione works as the main antioxidant compound, which also correlates with the stability of the beer flavor. In addition, high residual sugars in beer contribute to major nonvolatile components, which are reflected in a high caloric content. Therefore, in this study, the Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and the Saccharomycopsis fibuligera ALP1 gene encoding ${\alpha}$-amylase were coexpressed in industrial brewing yeast strain Y31 targeting the ${\alpha}$-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), resulting in the new recombinant strain TY3. The glutathione content in the fermentation broth of TY3 increased to 43.83 mg/l as compared with 33.34 mg/l in the fermentation broth of Y31. The recombinant strain showed a high ${\alpha}$-amylase activity and utilized more than 46% of the starch as the sole carbon source after 5 days. European Brewery Convention tube fermentation tests comparing the fermentation broths of TY3 and Y31 showed that the flavor stability index for TY3 was 1.3-fold higher, whereas its residual sugar concentration was 76.8% lower. Owing to the interruption of the ILV2 gene and ADH2 gene, the contents of diacetyl and acetaldehyde as off-flavor compounds were reduced by 56.93% and 31.25%, respectively, when compared with the contents in the Y31 fermentation broth. In addition, since no drug-resistant genes were introduced to the new recombinant strain, it should be more suitable for use in the beer industry, owing to its better flavor stability and other beneficial characteristics.