Kang, Chun Goo;Park, Hoon-Hee;Oh, Shin Hyun;Lee, Han Wool;Kim, Jung Yul;Oh, Joo Yung;Lee, Ju Young;Kim, Jae Sam;Lee, Chang Ho
The Korean Journal of Nuclear Medicine Technology
/
v.17
no.2
/
pp.3-9
/
2013
Purpose: Currently commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desire to evaluate the usefulness of nuclear medicine imaging. Materials and Methods: The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc-pertechnate$. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn ten times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Results: Under the same conditions infusion rate 40 mL/min fixed to adjust the pressure of the pump when the radiopharmaceuticals between 2-3 minutes in the most integrated in the kidney phantom was excreted inthe bladder. Glomerular filtration rate (GFR), respectively, by each device SYMBIA 1,091 mL/min, FORTE 1,232 mL/min, ARGUS 1,264 mL/min, INFINIA 1,302 mL/min in that there isno statistically significant difference was found, Tmax values and T1/2 values stars from all equipment with no statistically significant difference was found. CV values of the coefficient of variation less than 5% was found to be repeatable, and to 2.67% of the lowest SYMBIA appeared, INFINIA was the highest in the 4.86%. Conclusion: Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.
Lactacystin, a microbial natural product synthesized by Streptomyces, has been commonly used as a selective proteasome inhibitor in many studies. Proteasome inhibitors is known to be preventing the proliferation of cancer cells in vivo as well as in vitro. Furthermore, proteasome inhibitors, as single or combined with other anticancer agents, are suggested as a new class of potential anticancer agents. This study was undertaken to examine in vitro effects of cytotoxicity and growth inhibition, and the molecular mechanism underlying induction of apoptosis in SCC25 human tongue sqaumous cell carcinoma cell line treated with lactacystin. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingiva fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay respectively. The hoechst staining, hemacolor staining and TUNEL staining were conducted to observe SCC25 cells undergoing apoptosis. SCC25 cells were treated with lactacystin, and Western blotting, immunocytochemistry, confocal microscopy, FAScan flow cytometry, MMP activity, and proteasome activity were performed. Lactacystin treatment of SCC25 cells resulted in a time- and does-dependent decrease of cell viability and a does-dependent inhibition of cell growth, and induced apoptotic cell death. Interestingly, lactacytin remarkably revealed cytotoxicity in SCC25 cells but not normal cells. And tested SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, the decrease of DNA contents, the release of cytochrome c into cytosol, the translocation of AIF and DFF40 (CAD) onto nuclei, the up-regulation of Bax, and the activation of caspase-7, caspase-3, PARP, lamin A/C and DFF45 (ICAD). Flow cytometric analysis revealed that lactacystin resulted in G1 arrest in cell cycle progression which was associated with up-regulation in the protein expression of CDK inhibitors, $p21^{WAF1/CIP1}$ and $p27^{KIP1}$. We presented data indicating that lactacystin induces G1 cell cycle arrest and apoptois via proteasome, mitochondria and caspase pathway in SCC25 cells. Therefore our data provide the possibility that lactacystin could be as a novel therapeutic strategy for human tongue squamous cell carcinoma.
Park, Hoon-Hee;Lee, Juyoung;Kim, Sang-Wook;Lyu, Kwang Yeul;Jin, Gye Hwan
Journal of radiological science and technology
/
v.36
no.1
/
pp.49-55
/
2013
Currently, commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desires to evaluate the usefulness of nuclear medicine imaging. The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study, it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc$-pertechnate. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn five times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Depending on the speed of injection, radioisotope was a lot of integrated and emissions up when adjusting the pressure of the pump as 30 stroke, it was the least integrated and emissions up when adjusting as 40 stroke. The integration of the left & right kidney was not reached in the amount of the highest when adjusting as 10 stroke. In the changes according to the amount of the radioactive isotope, 0.6 mCi(22.2 MBq), 0.8 mCi (29.6 MBq)was showed up similar tendency but, in the result of the different injection 0.8 mCi, it was showed up counts close to double of 0.6 mCi. In the result of the differently injection speed of the left & right kidney, as a result of different conditions that injection speed was 20 stroke through left kidney phantom, the injection speed was 30 stroke through right kidney phantom, it was enough difference in the resulting image can be easily distinguished with the naked eye. Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical practice. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.
Hizikia fusiforme is a kind of brown edible seaweed that mainly grows in the temperate seaside areas of the northwest pacific, including Korea, Japan and China, and has been widely used as a health food for hundreds of years. Recently, H. fusiforme has been known to exert pharmacological activities including antioxidant, antimutagenic and anticoagulant activities. However, the molecular mechanisms of H. fusiforme in malignant cells have not been clearly elucidated yet. In this study, the effects of ethyl alcohol extract of H. fusiforme (EAHF) on the anti-proliferative effects of MDA-MB-231 and MCF-7 human breast cancer cells were investigated. EAHF treatment resulted in a concentration-dependent growth inhibition by including apoptosis in MDA-MB-231 cells and G1 phase arrest in MCF-7 cells, which could be proved by MTT assay, DAPI staining, agarose gel electrophoresis and flow cytometry analysis. In MDA-MB-231 cells, the increase in apoptosis induced by EAHF treatment correlated with up-regulation of pro-apoptotic Bax expression. EAHF treatment induced the proteolytic activation of caspase-3 and caspase-9, and a concomitant inhibition of poly (ADP-ribose) polymerase, $\beta$-catenin, phospholipase-${\gamma}1$ protein and DNA fragmentation factor 45/inhibitor of caspase-activated DNase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of H. fusiforme.
In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.
Kang, Dong Hyeon;Han, Eun Hye;Jin, Changbae;Kim, Hyoung Ja
Journal of the Korean Society of Food Science and Nutrition
/
v.45
no.11
/
pp.1610-1616
/
2016
This study aimed to establish an optimal extraction process and high performance liquid chromatography-ultraviolet (HPLC-UV) analytical method for determination of 3,5-dicaffeoylquinic acid (3,5-DCQA) as a part of materials standardization for the development of a xanthine oxidase inhibitor as a health functional food. The quantitative determination method of 3,5-DCQA as a marker compound was optimized by HPLC analysis using a Luna RP-18 column, and the correlation coefficient for the calibration curve showed good linearity of more than 0.9999 using a gradient eluent of water (1% acetic acid) and methanol as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 320 nm. The HPLC-UV method was applied successfully to quantification of the marker compound (3,5-DCQA) in Aster glehni extracts after validation of the method with linearity, accuracy, and precision. Ethanolic extracts of A. glehni (AGEs) were evaluated by reflux extraction at 70 and $80^{\circ}C$ with 30, 50, 70, and 80% ethanol for 3, 4, 5, and 6 h, respectively. Among AGEs, 70% AGE at $70^{\circ}C$ showed the highest content of 3,5-DCQA of $52.59{\pm}3.45mg/100g$ A. glehni. Furthermore, AGEs were analyzed for their inhibitory activities on uric acid production by the xanthine/xanthine oxidase system. The 70% AGE at $70^{\circ}C$ showed the most potent inhibitory activity with $IC_{50}$ values of $77.01{\pm}3.13{\sim}89.96{\pm}3.08{\mu}g/mL$. The results suggest that standardization of 3,5-DCQA in AGEs using HPLC-UV analysis would be an acceptable method for the development of health functional foods.
Journal of the Society of Cosmetic Scientists of Korea
/
v.49
no.3
/
pp.193-201
/
2023
Hydrogen peroxide (H2O2) is a type of active oxygen species (ROS) that causes oxidative stress in cells and affects cell growth, proliferation, senescence, and death. The purpose of this study is to find active peptides that attenuate cytotoxicity of H2O2. A positional scanning synthetic tetrapeptide combinatorial library was screened to predict the sequence of potentially active peptides. As a result of comparing the effect of peptide pools on H2O2-induced death of human keratinocytes (HaCaT cells), various active peptide sequences were predicted. Especially, peptides containing cysteine (C) residue were predicted to be active. In follow-up experiments, the cytotoxicity and activity of cysteine-containing peptides of different lengths, such as C-NH2, CC-NH2, CCC-NH2, and CCCC-NH2 were examined. C-NH2 and CC-NH2 showed no significant cytotoxicity up to 1.0 mM, but CCC-NH2, and CCCC-NH2 showed relatively strong cytotoxicity. C-NH2 and CC-NH2 alleviated H2O2-induced cytotoxicity. CC-NH2 was more cytoprotective compared to C-NH2, C, N-acetyl cysteine (NAC), and glutathione (GSH). When intracellular ROS was measured by flow cytometry, H2O2 increased ROS production, and CC-NH2 suppressed ROS production more effectively than C-NH2, and it was as effective as C, NAC, and GSH. This study suggests that CC-NH2 of the cysteine-containing peptides of different lengths has an antioxidant property that safely and effectively alleviates H2O2-induced cytotoxicity and ROS production.
Purpose: To assess the effect of extracranial-intracranial (EC-IC) bypass surgery on hemodynamic improvement, we evaluated serial regional cerebral hemodynamic change of the middle cerebral artery (MCA) in symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or MCA using $^{99m}Tc$-ECD acetazolamide stress brain perfusion SPECT (Acetazolamide SPECT). Materials and Methods: The patients who had suffered a recent stroke with atherosclerotic ICA or MCA occlusion underwent EC-IC bypass surgery and Acetazolamide SPECT at 1 week before and three to six months after surgery. For image analysis, attenuation corrected images were spatially normalized to SPECT templates with SPM2. Anatomical automated labeling was applied to calculate mean counts of each Volume-Of-Interest (VOI). Seven VOIs of bilateral frontal, parietal, temporal regions of the MCA territory and the ipsilateral cerebellum were defined. Using mean counts of 7 VOIs, cerebral perfusion index and perfusion reserve index were calculated. Results: Seventeen patients (M:F =12:5, mean age $53{\pm}2yr$) were finally included in the analysis. The cerebral blood flow of the parietal region increased at 1 week (p = 0.003) and decreased to the preoperative level at 3-6 months (p = 0.003). The cerebrovascular reserve of the frontal and parietal regions increased significantly at 1 week after surgery (p<0.01) and improved further at 3-6 months. Conclusion: Cerebrovascular reserve of the MCA territory was significantly improved at early postoperative period after EC-IC bypass and kept improved state during long-term follow-up, although cerebral blood flow did not significantly improved. Therefore, cerebrovascular reserve may be a good indicator of postoperative hemodynamic improvement resulted from bypass effect.
Purpose: $^{13}N$-ammonia is a well known radiopharmaceutical for the measurement of a myocardial blood flow (MBF) non-invasively using PET-CT. In this study, we investigated a correlation between MBF obtained from dynamic imaging and myocardial perfusion score (MPS) obtained from static imaging for usefulness of cardiac PET study. Methods: Twelve patients (11 males, 1 female, $57.9{\pm}8.6$ years old) with suspicious coronary artery disease underwent PET-CT scan. Dynamic scans (6 min: $5\;sec\;{\times}\;12,\;10\;sec\;{\times}\;6,\;20\;sec\;{\times}\;3,\;and\;30\;sec\;{\times}\;6$) were initiated simultaneously with bolus injection of 11 MBq/kg $^{13}N-ammonia$ to acquire rest and stress image. Gating image was acquired during 13 minutes continuously. Nine-segment model (4 basal walls, 4 mid walls, and apex) was used for a measurement of MBF. Time activity curve of input function and myocardium was extracted from ROI methods in 9 regions for quantification. The MPS were evaluated using quantitative analysis software. To compare between 20-segment model and 9-segment model, 6 basal segments were excluded and averaged segmental scores were used. Results: There are weak correlation between MBF (rest, 0.18-2.38 ml/min/g; stress, 0.40-4.95 ml/min/g) and MPS (rest 22-91%, stress, 14-90%), however the correlation coefficient between corrected MBF and MPS in rest state was higher than stress state (rest r=0.59; stress r=0.80). As a thickening increased, correlation between MBF and MPS also showed good correlation at each segments. Conclusions: Corrected and translated MPS as its characteristics using $^{13}N$-ammonia showed good correlation with absolute MBF measured by dynamic image in this study. Therefore, we showed MPS is one of good indices which reflect MBF. We anticipate PET-CT could be used as useful tool for evaluation of myocardial function in nuclear cardiac study.
The enzymatic hydrolysate of gelatin extracted from fish skin was fractionated and recycled through the membrane reactor according to the molecular weight for the purpose of using as functional material. In addition, the enzymatic hydrolysis conditions of gelatin, enzyme stability by membrane and mechanical shear, and effect on the long-term operational stability of the recycle membrane reactor were investigated. Using the pH-drop technique, Alcalase, pronase E and collagenase were identified as the most suitable enzymes for the hydrolysis of fish skin gelatin. The optimum hydrolysis conditions in the 1st-step membrane reactor(1st-SMR) by Alcalase were enzyme concentration 0.2mg/ml, substrate-to-enzyme ratio(S/E) 50(w/w), $50^{\circ}C$, pH 8.0, reaction volume 600ml and flow rate 6.14ml/min. In the 2nd-SMR by pronase E were enzyme concentration 0.3mg/ml, S/E 33(w/w), $50^{\circ}C$, pH 8.0, reaction volume 600ml and flow rate 6.14ml/min. In the case of 3rd-SMR, enzyme concentration 0.1mg/ml, S/E 100(w/w), $37^{\circ}C$, pH 7.5, reaction volume 600ml and flow rate 10ml/min. Decreased enzyme activities by mechanical shear and membrane were 30% and 15% in the 1st-SMR, were 14% and 5% in the 2nd-SMR, and 18% and 8% in the 3rd-SMR, respectively. Under the optimum conditions, the degree of hydrolysis in the 1st, 2nd and 3rd-SMR were 3.5%(Kjeldahl method, 87%), 3.1%(77%) and 2.7%(70%), respectively. The productivity of hydrolysate in the continuous three-step membrane reactor was 430mg per enzyme(mg) for 10 times of volume replacements.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.