• Title/Summary/Keyword: Molecular Dynamics (MD) simulations

Search Result 123, Processing Time 0.032 seconds

A Molecular Dynamics Simulation Study of Na- and K-birnessite Interlayer Structures (Na-, K-버네사이트 층간 구조에 대한 분자동역학 시뮬레이션 연구)

  • Park, Sujeong;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.143-152
    • /
    • 2020
  • Birnessite is a layered manganese oxide mineral with ~7 Å of d-spacing. Because of its high cation exchange capacity, birnessite greatly impacts the chemical compositions of ground water and fluids in sediment pores. Understanding the cation exchange mechanisms requires atomistic investigations of the crystal structures and coordination environments of hydrated cations in the interlayer. In this study, we conducted classical molecular dynamics (MD) simulations, an atomistic simulation method of computational mineralogy, for triclinic Na-birnessite and K-birnessite whose chemical formula are from previous experiments. We report our MD simulation results of the crystal structures, coordination environments of Na+ and K+, and the polytypes of birnessite and compare them with available experimental results. The simulation results well reproduced experimental lattice parameters and provided atomic level information for the interlayer cation and water molecule sites that are difficult to distinguish in X-ray experiments. We also report that the polytype of the Mn octahedral sheets is identical between Na- and K-birnessite, but the cation positions differ from each other, demonstrating a correlation between the coordination environment of the interlayer cations and the crystal lattice parameters. This study shows that MD simulations are very promising in elucidating ion exchange reactions of birnessite.

Molecular Dynamics Simulation Studies of Benzene, Toluene, and p-Xylene in NpT Ensemble: Thermodynamic, Structural, and Dynamic Properties

  • Kim, Ja-Hun;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.447-453
    • /
    • 2002
  • In this paper we have presented the results of thermodynamic, structural, and dynamic properties of model systems for liquid benzene, toluene and p-xylene in an isobaric-isothermal (NpT) ensemble at 283.15, 303.15, 323.15, and 343.15 K using molecular dynamics (MD) simulation. This work is initiated to compensate for our previous canonical (NVT) ensemble MD simulations [Bull. Kor. Chem. Soc. 2001, 23, 441] for the same systems in which the calculated pressures were too low. The calculated pressures in the NpT ensemble MD simulations are close to 1 atm and the volume of each system increases with increasing temperature. The first and second peaks in the center of mass g(r) diminish gradually and the minima increase as usual for the three liquids as the temperature increases. The three peaks of the site-site gC-C(r) at 283.15 K support the perpendicular structure of nearest neighbors in liquid benzene. Two self-diffusion coefficients of liquid benzene via the Einstein equation and via the Green-Kubo relation are in excellent agreement with the experimental measures. The self-diffusion coefficients of liquid toluene and p-xylene are in accord with the trend that the self-diffusion coefficient decreases with increasing number of methyl group. The friction constants calculated from the force auto-correlation (FAC) function with the assumption that the fast random force correlation ends at time which the FAC has the first negative value give a correct qualitative trends: decrease with increase of temperature and increase with the number of methyl group. The friction constants calculated from the FAC's are always less than those obtained from the friction-diffusion relation which reflects that the random FAC decays slower than the total FAC as described by Kubo [Rep. Prog. Phys. 1966, 29, 255].

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari;AliReza Setoodeh;Hamed Farahmand;Hamed Badjian;Greg Wheatley
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

The Mechanism : Hydrolysis of Formamide

  • Baek, Yong-Su;Choe, Cheol-Ho
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.91-98
    • /
    • 2015
  • Formamide의 중성가수분해 mechanism은 QM/MM (quantum mecahnics/molecular mechanics) molecular dynamics simulations 및 CPMD과 같은 방법으로 연구되어왔다. 본 연구에서는. Umbrella sampling을 이용한 QM/MM-MD simulation을 사용하여 4가지 반응의 free energy surface를 도출해냈다. 전체적으로, 가장 선호되는 메커니즘은 two step으로 구성된 water assisted stepwise mechanism이었으며 모든 mechanism은 ab-initio calculation과 QM/MM-MD simulation이 수행되었다. water assisted stepwise mechanism을 살펴보면, 첫 번째 step에서 formamide의 carbonyl group이 hydrate되면서 gem-diol intermediate를 형성한다. 다음 step에서, intermediate의 hydroxyl group으로부터 amino group으로 water-assisted proton transfer이 일어난다. 두 반응 모두에서 물이 proton transfer를 직접적으로 도와주는 것을 관찰할 수 있었다. 특히, ab-initio calculation과는 다르게 QM/MM-MD에서는 gem-diol intermediate가 안정화되는 것으로 solvent effect를 잘 보여준다.

  • PDF

Numerical investigation of mechanical properties of nanowires: a review

  • Gu, Y.T.;Zhan, H.F.;Xu, Xu
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.115-129
    • /
    • 2012
  • Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs' mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.

Molecular Dynamics Simulation of Liquid Alkanes. Ⅰ. Thermodynamics and Structures of Normal Alkanes : n-butane to n-heptadecane

  • 이송희;이홍;박형석;Jayendran C. Rasaiah
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.735-744
    • /
    • 1996
  • We present results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models Ⅰ-Ⅲ. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. Model Ⅰ is the original Ryckaert and Bellemans' collapsed atomic model [Discuss. Faraday Soc. 1978, 66, 95] and model Ⅱ is the expanded collapsed model which includes C-C bond stretching and C-C-C bond angle bending potentials in addition to Lennard-Jones and torsional potentials of model Ⅰ. In model Ⅲ all the carbon and hydrogen atoms in the monomeric units are represented explicitly for the alkane molecules. Excellent agreement of the results of our MD simulations of model Ⅰ for n-butane with those of Edberg et al.[J. Chem. Phys. 1986, 84, 6933], who used a different algorithm confirms the validity of our algorithms for MD simulations of model Ⅱ for 14 liquid n-alkanes and of models Ⅰ and Ⅲ for liquid n-butane, n-decane, and n-heptadecane. The thermodynamic and structural properties of models Ⅰ and Ⅱ are very similar to each other and the thermodynamic properties of model Ⅲ for the three n-alkanes are not much different from those of models Ⅰ and Ⅱ. However, the structural properties of model Ⅲ are very different from those of models Ⅰ and Ⅱ as observed by comparing the radial distribution functions, the average end-to-end distances and the root-mean-squared radii of gyrations.

Calculation of the Absolute Rate of Human Cu/Zn Superoxide Dismutases from Atomic-Level Molecular Dynamics Simulations

  • Lee, Jin-Uk;Lee, Woo-Jin;Park, Hwang-Seo;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.862-868
    • /
    • 2012
  • Based on the recently derived general expression for the rates of diffusion-controlled reactions, we calculate the rates of dismutation of the superoxide anion radical catalyzed by Cu/Zn superoxide dismutases (SOD). This is the first attempt to calculate the absolute rates of diffusion-controlled enzyme reactions based on the atomiclevel molecular dynamics simulations. All solvent molecules are included explicitly and the effects of the structural flexibility of enzyme, especially those of side chain motions near the active site, are included in the present calculation. In addition, the actual mobility of the substrate molecule is taken into account, which may change as the molecule approaches the active site of enzyme from the bulk solution. The absolute value of the rate constant for the wild type SOD reaction obtained from MD simulation is shown to be in good agreement with the experimental value. The calculated reactivity of a mutant SOD is also in agreement with the experimental result.

The Radial Distribution Functions of the Scaled OSS2 Water

  • Lee, Song Hi
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.669-672
    • /
    • 2012
  • Classical molecular dynamics (MD) simulations using a scaled OSS2 potential originally derived from ab initio calculations are used to study the radial distribution functions of water. The original OSS2 water potential is shown to represent a glassy or an ice at ambient temperature, but the diffusion coefficient increases on increasing the temperature of the system or decreasing the density. This suggests scaling the OSS2 potential. The O-O, O-H, and H-H radial distribution functions and the corresponding coordination numbers for the scaled OSS2 potential, obtained by MD simulation, are in good agreement with the experiment results and calculations for the SPC/E water potential over a range of temperatures.

Molecular Dynamics Simulation Studies of Viscosity and Diffusion of n-Alkane Oligomers at High Temperatures

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3909-3913
    • /
    • 2011
  • In this paper we have carried out molecular dynamics simulations (MD) for model systems of liquid n-alkane oligomers ($C_{12}{\sim}C_{80}$) at high temperatures (~2300 K) in a canonical ensemble to calculate viscosity ${\eta}$, self-diffusion constants D, and monomeric friction constant ${\zeta}$. We found that the long chains of these n-alkanes at high temperatures show an abnormality in density and in monomeric friction constant. The behavior of both activation energies, $E_{\eta}$ and $E_D$, and the mass and temperature dependence of ${\eta}$, D, and ${\zeta}$ are discussed.

Analysis of Mechanical Behavior of Nanowire by $Nos\acute{e}-Poincar\acute{e}$ Molecular Dynamics Simulation ($Nos\acute{e}-Poincar\acute{e}$ 분자 동역학 알고리즘을 이용한 나노 와이어의 역학적 거동 해석)

  • Lee, Byeong-Yong;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.506-511
    • /
    • 2007
  • Mechanical behavior of copper nanowire is investigated. An FCC nanowire model composed of 1,408 atoms is used for MD simulation. Simulations are performed within NVT ensemble setting without periodic boundary conditions. $Nos\acute{e}-Poincar\acute{e}$ MD algorithm is employed to guarantee preservation of Hamiltonian and temperature. Numerical tensile tests of Nanowire are carried out with constant strain rate. Additionally, temperature and strain rate effects are considered. Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values. In (22,4,4) Copper nanowire, non-linear behavior appears around ${\epsilon}\simeq0.09.$ At this instance, starting of structural reorientations are observed. At the onset of reorientation, the modulus characteristics are also investigated.

  • PDF