• 제목/요약/키워드: Molecular Dissociation

검색결과 164건 처리시간 0.029초

중성리간드(L)가 (hfac)Cu(I)L 전구체의 특성 및 구리 MOCVD 공정에 미치는 영향 (Effect of Neutral Ligand(L) on the Precursor Characteristics of (hfac)Cu(I)L and on Cu MOCVD Process)

  • 최경근;김경원;이시우
    • 한국재료학회지
    • /
    • 제11권3호
    • /
    • pp.185-190
    • /
    • 2001
  • (hfac)Cu(I)L구리 1가 전구체의 경우 L의 종류에 따라 여러 화합물이 존재하며 L이 전구체의 특성 및 증착에 미치는 영향을 규명하였다. 이때 중성리간드는 ATMS(allytrimethylsilane), VTMS(vinyltri-methylsilane), VCH(vinylcyclohexane), MP (4-methyl-1-pentene), ACP(allylcyclopentane), DMB (3,3-dimethyl-1-butene) 등의 alkene류이었다 hfacCu(I)L 전구체는 TG-DSC 분석에서 관찰된 Cu(I)-L 분해 온도가 낮으면 $100^{\circ}C$ 이하의 저온 증착이 가능하였고 저온에서 낮은 박막 비저항 값을 얻을 수 있었다. 또한 이 분해온도가 높은 전구체 일수록 열적으로 안정함을 일정 시간 가열평가를 통해 알 수 있었다. 약 $125~175^{\circ}C$ 증착온도에서는 중성리간드의 종류에 무관하게 증착된 구리 박막의 비저항값이 거의 비슷하였고 약 $226^{\circ}C$ 이상의 증착온도에서는 박막의 비저항이 중성리간드의 분자량의 크기에 비례하여 증가하였다. 전구체의 증기압은 중성리간드의 끓는점과 가장 밀접한 관계가 있으며 중성리간드의 끓는점이 낮으면 낮을수록 증기압은 높았다.

  • PDF

Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE)

  • Buyannemekh, Dolgorsuren;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.355-362
    • /
    • 2017
  • The ${\beta}2$ integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of ${\beta}2$ integrin, ${\alpha}M{\beta}2$ and ${\alpha}X{\beta}2$, share the leukocyte distribution profile and integrin ${\alpha}X{\beta}2$ is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. ${\underline{R}}eceptor$ for ${\underline{a}}dvanced$ ${\underline{g}}lycation$ ${\underline{e}}nd$ ${\underline{p}}roducts$ (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and ${\alpha}X{\beta}2$ play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of ${\alpha}X{\beta}2$, we characterize the binding nature and the interacting moieties of ${\alpha}X$ I-domain and RAGE. Their binding requires divalent cations ($Mg^{2+}$ and $Mn^{2+}$) and shows an affinity on the sub-micro molar level: the dissociation constant of ${\alpha}X$ I-domains binding to RAGE being $0.49{\mu}M$. Furthermore, the ${\alpha}X$ I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of ${\alpha}X$ I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to ${\alpha}X$ I-domain. In conclusion, the main mechanism of ${\alpha}X$ I-domain binding to RAGE is a charge interaction, in which the acidic moieties of ${\alpha}X$ I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.

Alternative splicing variant of NRP/B promotes tumorigenesis of gastric cancer

  • Kim, Aram;Mok, Bo Ram;Hahn, Soojung;Yoo, Jongman;Kim, Dong Hyun;Kim, Tae-Aug
    • BMB Reports
    • /
    • 제55권7호
    • /
    • pp.348-353
    • /
    • 2022
  • Gastrointestinal cancer is associated with a high mortality rate. Here, we report that the splice variant of NRP/B contributes to tumorigenic activity in highly malignant gastric cancer through dissociation from the tumor repressor, HDAC5. NRP/B mRNA expression is significantly higher in the human gastric cancer tissues than in the normal tissues. Further, high levels of both the NRP/B splice variant and Lgr5, but not the full-length protein, are found in highly tumorigenic gastric tumor cells, but not in non-tumorigenic cells. The loss of NRP/B markedly inhibits cell migration and invasion, which reduces tumor formation in vivo. Importantly, the inhibition of alternative splicing increases the levels of NRP/B-1 mRNA and protein in AGS cells. The ectopic expression of full-length NRP/B exhibits tumor-suppressive activity, whereas NRP/B-2 induces the noninvasive human gastric cancer cells tumorigenesis. The splice variant NRP/B-2 which loses the capacity to interact with tumor repressors promoted oncogenic activity, suggesting that the BTB/POZ domain in the N-terminus has a crucial role in the suppression of gastric cancer. Therefore, the regulation of alternative splicing of the NRP/B gene is a potential novel target for the treatment of gastrointestinal cancer.

Molecular insights into the role of genetic determinants of congenital hypothyroidism

  • Kollati, Yedukondalu;Akella, Radha Rama Devi;Naushad, Shaik Mohammad;Patel, Rajesh K.;Reddy, G. Bhanuprakash;Dirisala, Vijaya R.
    • Genomics & Informatics
    • /
    • 제19권3호
    • /
    • pp.29.1-29.10
    • /
    • 2021
  • In our previous studies, we have demonstrated the association of certain variants of the thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (TG) genes with congenital hypothyroidism. Herein, we explored the mechanistic basis for this association using different in silico tools. The mRNA 3'-untranslated region (3'-UTR) plays key roles in gene expression at the post-transcriptional level. In TSHR variants (rs2268477, rs7144481, and rs17630128), the binding affinity of microRNAs (miRs) (hsa-miR-154-5p, hsa-miR-376a-2-5p, hsa-miR-3935, hsa-miR-4280, and hsa-miR-6858-3p) to the 3'-UTR is disrupted, affecting post-transcriptional gene regulation. TPO and TG are the two key proteins necessary for the biosynthesis of thyroid hormones in the presence of iodide and H2O2. Reduced stability of these proteins leads to aberrant biosynthesis of thyroid hormones. Compared to the wild-type TPO protein, the p.S398T variant was found to exhibit less stability and significant rearrangements of intra-atomic bonds affecting the stoichiometry and substrate binding (binding energies, ΔG of wild-type vs. mutant: -15 vs. -13.8 kcal/mol; and dissociation constant, Kd of wild-type vs. mutant: 7.2E-12 vs. 7.0E-11 M). The missense mutations p.G653D and p.R1999W on the TG protein showed altered ΔG(0.24 kcal/mol and 0.79 kcal/mol, respectively). In conclusion, an in silico analysis of TSHR genetic variants in the 3'-UTR showed that they alter the binding affinities of different miRs. The TPO protein structure and mutant protein complex (p.S398T) are less stable, with potentially deleterious effects. A structural and energy analysis showed that TG mutations (p.G653D and p.R1999W) reduce the stability of the TG protein and affect its structure-functional relationship.

New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study

  • Eun-Young Lee;Young-Ho Kim;Md Abu Rayhan;Hyun Guy Kang;June Hyuk Kim;Jong Woong Park;Seog-Yun Park;So Hee Lee;Hye Jin You
    • BMB Reports
    • /
    • 제56권4호
    • /
    • pp.258-264
    • /
    • 2023
  • As a high-grade soft-tissue sarcoma (STS), undifferentiated pleomorphic sarcoma (UPS) is highly recurrent and malignant. UPS is categorized as a tumor of uncertain differentiation and has few options for treatment due to its lack of targetable genetic alterations. There are also few cell lines that provide a representative model for UPS, leading to a dearth of experimental research. Here, we established and characterized new cell lines derived from two recurrent UPS tissues. Cells were obtained from UPS tissues by mincing, followed by extraction or dissociation using enzymes and culture in a standard culture environment. Cells were maintained for several months without artificial treatment, and some cell clones were found to be tumorigenic in an immunodeficient mouse model. Interestingly, some cells formed tumors in vivo when injected after aggregation in a non-adherent culture system for 24 h. The tissues from in vivo study and tissues from patients shared common histological characteristics. Pathways related to the cell cycle, such as DNA replication, were enriched in both cell clones. Pathways related to cell-cell adhesion and cell-cell signaling were also enriched, suggesting a role of the mesenchymal-to-epithelial transition for tumorigenicity in vivo. These new UPS cell lines may facilitate research to identify therapeutic strategies for UPS.

사람의 섬유아세포에서 Glucose 농도가 Insulin-like Growth Factor Binding Protein-5의 발현에 미치는 영향 (Effects of Glucose on Insulin-like Growth Factor Binding-5 Expression in Human Fibroblasts.)

  • 류혜영;황혜정;김인혜;류홍수;남택정
    • 생명과학회지
    • /
    • 제17권9호통권89호
    • /
    • pp.1224-1231
    • /
    • 2007
  • 사람의 섬유아세포인 GM10에서 glucose 농도에 따른 IGFBP-5의 존재와 발현에 미치는 영향을 살펴보고 당뇨병과 관련된 in vitro model system으로서의 활용 가능성을 검토하고자 하였다. 섬유아세포인 GM10 세포를 시용하여 glu-cose 배양 조건에 따른 IGFBP-5의 존재와 발현에 미치는 영향을 살펴보았다. 그 결과, IGFBP-5의 단백질 수준은 고농도 glucose 배양 조건에서 증가하였으나, IGFBP-5 mRNA 발현에는 아무런 영향을 나타내지 않았다. IGFBP-5 protease 활성은 고농도 glucose 배양 조건에서 높았다. IGF- I 과 인슐 린은 IGFBP-5 protease 활성에 관여하는 것으로 보여지며, GM10 세포에 있어서 IGFBP-5의 분해에는 serine protease 뿐만 아니라 metalloprotease가 관여하는 것으로 나타났다. 또한, gelatin zymography를 통한 protease 활성은 고농도 glucose 배양 조건에서 크게 나타났으며, 시간 의존적으로 증가하였다. 본 연구 결과를 바탕으로 IGFs와 같은 세포 성장인자에 대한 연구는 세포수준의 당뇨병과 관련된 in vitro model system이 가능하리라고 여겨지며 더 많은 연구가 진행되어야 할 것으로 보인다.

A Point Mutation at the C-Terminal Half of the Repressor of Temperate Mycobacteriophage L1 Affects Its Binding to the Operator DNA

  • Ganguly, Tridib;Chattoraj, Partho;Das, Malabika;Chanda, Palas K.;Mandal, Nitai.C.;Lee, Chia Y.;Sau, Subrata
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.709-714
    • /
    • 2004
  • The wild-type repressor CI of temperate mycobacteriophage L1 and the temperature-sensitive (ts) repressor CIts391 of a mutant L1 phage, L1cIts391, have been separately overexpressed in E. coli. Both these repressors were observed to specifically bind with the same cognate operator DNA. The operator-binding activity of CIts391 was shown to differ significantly than that of the CI at 32 to $42^{\circ}C$. While 40-95% operator-binding activity was shown to be retained at 35 to $42^{\circ}C$ in CI, more than 75% operator-binding activity was lost in CIts391 at 35 to $38^{\circ}C$, although the latter showed only 10% less binding compared to that of the former at $32^{\circ}C$. The CIts391 showed almost no binding at $42^{\circ}C$. An in vivo study showed that the CI repressor inhibited the growth of a clear plaque former mutant of the L1 phage more strongly than that of the CIts391 repressor at both 32 and $42^{\circ}C$. The half-life of the CIts391-operator complex was found to be about 8 times less than that of the CI-operator complex at $32^{\circ}C$. Interestingly, the repressor-operator complexes preformed at $0^{\circ}C$ have shown varying degrees of resistance to dissociation at the temperatures which inhibit the formation of these complexes are inhibited. The CI repressor, but not that of CIts391, regains most of the DNA-binding activity on cooling to $32^{\circ}C$ after preincubation at 42 to $52^{\circ}C$. All these data suggest that the 131st proline residue at the C-terminal half of CI, which changed to leucine in the CIts391, plays a crucial role in binding the L1 repressor to the cognate operator DNA, although the helix-turn-helix DNA-binding motif of the L1 repressor is located at its N-terminal end.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2003년도 추계학술대회
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Potential Energy Surfaces for Ligand Exchange Reactions of Square Planar Diamagnetic PtY2L2 Complexes:Hydrogen Bond (PtY2L2···L') versus Apical (Y2L2Pt···L') Interaction

  • Park, Jong-Keun;Kim, Bong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1405-1417
    • /
    • 2006
  • The geometrical structures, potential energy surfaces, and energetics for the ligand exchange reactions of tetracoordinated platinum $(PtY_2L_2\;:\;Y,\;L=Cl^-,\;OH^-,\;OH_2,\;NH_3)$ complexes in the ligand-solvent interaction systems were investigated using the ab initio Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The potential energy surfaces for the ligand exchange reactions used for the conversions of $(PtCl_4\;+\;H_2O)^{^\ast_\ast}\;to\;[PtCl_3(H_2O)\;+\;Cl^-]$ and $[Pt(NH_3)_2Cl_2\;+\;H_2O]$$[Pt(NH_3)_2Cl_2\;+\;H_2O]$ to $[Pt(NH_3)_2Cl(H_2O)\;+\;Cl^-] $ were investigated in detail. For these two exchange reactions, the transition states $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime])^{^\ast_\ast} $ correspond to complexes such as $(PtCl_4{\cdot}{\cdot}{\cdot}H_2O)^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$, respectively. In the transition state, $([PtCl_4{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]]^{^\ast_\ast})$ have a kind of 6-membered $(Pt-Cl{\cdot}{\cdot}{\cdot}HOH{\cdot}{\cdot}{\cdot}Cl)$ and $(Pt-OH{\cdot}{\cdot}{\cdot}Cl{\cdot}{\cdot}{\cdot}HN)$ interactions, respectively, wherein a central Pt(II) metal directly combines with a leaving $Cl^-$ and an entering $H_2O$. Simultaneously, the entering $H_2O$ interacts with a leaving $Cl^-$. No vertical one metal-ligand interactions $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime]) $ are found at the axial positions of the square planar $(PtY_2L_2)$ complexes, which were formed via a vertically associative mechanism leading to $D_{3h}$ or $C_{2v}$-transition state symmetry. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes are also examined quantitatively. Schematic diagrams for the dissociation reactions of {PtCl4(H2O)n(n=2,4)} into {$PtCl_3(H_2O)_{(n-2)}\;+\;Cl^-(H_2O)_2$} and the binding energies {$PtCl_4(H_2O)_n$(n = 1-5)} of $PtCl_4$ with water molecules are drawn.

팔면체형 Fe(Ⅱ)와 Ni(Ⅱ)착물의 실측 리간드화열에 관한 이론적 연구 (Theoretical Study on Observed Heat of Ligation for Iron(Ⅱ) and Nickel(Ⅱ) Octahedral Complexes)

  • 김정성;최진태;송영대;조태섭
    • 대한화학회지
    • /
    • 제43권2호
    • /
    • pp.141-149
    • /
    • 1999
  • Fe(II) 및 Ni(II) 이온에 $NH_3$ 리간드를 배위시켜 분자역학(MM2)법으로 최소에너지를 갖는 구조를 구한 후 확장분자궤도함수(EHMO)법 및 ZINDO/1법으로 양자화학적 양을 얻어 실험적 사실과 비교 검토하였다. 즉, 팔면체인 $[M(H_2O)_{6-x}(NH_3)_x]^{2+}(M=Fe(II),\;Ni(II)(x=0,\;1,\;…,\;6)에서 $NH_3$ 분자가 $H_2O$ 분자와 단계적으로 치환될 때에 따른 실측리간드화열이 MO 이론으로 계산한 팔면체형인 Fe(II)및 Ni(II)착물의 양자화학적 양인 중심금속의 알짜전하, 형성엔탈피, 총결합에너지로부터 실측 리간드화열$({\Delta}H_{obs})$을 이론적으로 예측할 수 있는 ${\Delta}H_{obs}=-0.2858_{qFe}+0.8813(r=0.97),\;{\Delta}H_{obs}=-0.8981_{qNi}+1.7929(r=0.95),\;{\Delta}H_{obs}=-0.0031H_{f(Fe)}+0.5725(r=0.97),\;{\Delta}H_{obs}=-0.0095H_{f(Ni)}+0.9193(r=0.97),\;{\Delta}H_{obs}=0.0476E_{diss(Fe)}+0.6434(r=0.94),\;{\Delta}H_{obs}=0.1401E_{diss(Ni)}+1.1393(r=0.93)$인 이론식을 각각 얻었다.

  • PDF