• Title/Summary/Keyword: Molecular Detection

Search Result 1,108, Processing Time 0.043 seconds

Synthesis of dimeric fluorescent TSPO ligand for detection of glioma

  • Tien Tan Bui;Hee-Kwon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • TSPO, an 18-kDa translocator protein, is a peripheral-type benzodiazepine receptor that has been associated to a variety of biological activities such as apoptosis, steroidogenesis, and cell proliferation. Because TSPO overexpression has been found in various forms of cancer, it has recently become one of the most appealing biological targets for cancer therapies and detection. In order to create new optical imaging agents for improved diagnostics, we synthesized a novel dimeric fluorescent TSPO ligand based on PRB28 structure and SCy5.5. Following the preparation of the novel TSPO ligand, in vivo and ex vivo imaging tests were performed to examine the tumor uptake characteristics of the fluorescent TSPO ligand in a glioma animal model, and it was found that novel TSPO ligand was accumulated in glioma. These results suggested that novel dimeric fluorescent TSPO ligand will be applied to detect glioma.

Performance Evaluation of Explosive Specific Bio-receptor Using QCM Sensing Platform for Resonance Frequency Shift Detection (공진점변화검출용 QCM 센싱플랫폼을 이용한 폭발물 특이적 바이오수용체 성능평가)

  • Lim, Si-Hyung;Jeong, Hyun-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.280-284
    • /
    • 2011
  • The mass change during the molecular interaction between explosive specific bio-receptors and target molecules has been measured using quartz crystal microbalance(QCM), which has a mass change detection limit up to ~ng/$cm^2$. The environmental effect on the molecular interaction has been evaluated. In the liquid phase molecular interaction experiments, the high selectivity of the bio-receptor to DNT compared with toluene has been shown and the sensitivity for various concentrations of DNT has been demonstrated.

Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.46-55
    • /
    • 2007
  • The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

Direct Detection of (1-3)-$\beta$-Glucanase Isozymes in Isoelectrofocusing Gels Using a Dye -Labeled Substrate (염료착색 기질을 이용한 IEF gel에서(1-3)-$\beta$-glucanase 동위효소의 검출)

  • Yun, Song-Joong;Lee, Myong-Chul;Kwon, In-Sook;Kim, Tae-San;Go, Seung-Joo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.2
    • /
    • pp.121-127
    • /
    • 1994
  • A procedure for the direct detection of (1-3)-$\beta$-glucanase isozymes in electrophoresis gels was developed. The procedure employed the commercial preparation of AZCL-pachyman as a chromogenic substrate for (1-3)-$\beta$-glucanases. The procedure detected the three basic isozymes which have been known to be expressed in germinating barley kernels. A major acidic and a minor isozymes were also detected in germinating kernels. The procedure was proved to be fast, simple and sensitive enough to be used for the analysis of the expression of (1-3)-$\beta$-glucanase isozymes in plant tissues. The detection limit of the procedure for the commercial preparation of Penicillium (1-3)-$\beta$-glucanase was estimated to be as low as 50$\mu$U. The procedure could be used for the investigation of (1-3)-$\beta$-glucanases in laboratories facilitated with ordinary equipments and research personnel.

  • PDF

Development of Rapid Molecular Detection Marker for Colletotrichum spp. in Leaf and Fruit Tissues of Sweet Persimmon

  • Iee, Sang-Pyo;Lee, Youn-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.989-992
    • /
    • 2002
  • Sweet persimmon (Diospyros kaki Thunb.) is widely cultivated in the southern part of Korea and its cultivation is increasing. However, anthracnose disease caused by Colletotricuhum species is one of the major hinderances to the cultivation and production of sweet persimmon. Therefore, in the current study, PCR was used to specifically detect Colletotrichum spp., based on the sequences of the ITS II regions in the rDNA. Using the sequence data, CO-1 was designated to detect Colletotrichum together the with ITS 4 primer. The result showed that a single segment of ca. 500 bp was observed only in Colletotrichum, but not in any other fungal and bacterial isolates. The annealing temperatures and template DNA quantites were also investigated to identify optimal conditions for detection. Using these species-specific primers, a unique band was obtained at annealing temperatures ranging from $55^{\circ}C\;and\;61^{\circ}C$ and template DNA levels from 10 pg- $10{\mu}g$.

Detection of Genus Phytophthora and Phytophthora cryptogea-P. drechsleri Complex Group Using Polymerase Chain Reaction with Specific Primers

  • Hong, Seung-Beom;Park, In-Cheol;Go, Seung-Joo;Ryu, Jin-Chang
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.287-294
    • /
    • 1999
  • A technique based on the polymerase chain reaction (PCR) for the specific detection of genus Phytophthora and Phytophthora cryptogea-P. drechsleri complex group was developed using nucleotide sequence information of ribosomal DNA (rDNA) regions. The internal transcribed spacers (ITS) including 5.8S were sequenced for P. cryptogea-P. drechsleri complex group and its related species. Two pairs of oligonucleotide primers were designed. Primer pair ITS1/Phy amplified ca. 240 bp fragment in 12 out of 13 specie of Phytophthora, but not in Pythium spp., Fusarium spp.and Rhizoctonia solani. Primer pair rPhy/Pcd amplified 549 bp fragment only in P. cryptogea-P. drechsleri complex group, but not in other Phytophthora spp.and other genera. Specific PCR amplification using the primers was successful in detecting Phytophthora and P. cryptogea-P. drechsleri complex group in diseased plants.

  • PDF

Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes

  • Jeongik Cho;Heymin Song;Hyun C. Yoon;Hyunjin Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.340-348
    • /
    • 2024
  • Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.

RT-PCR Detection of dsRNA Mycoviruses Infecting Pleurotus ostreatus and Agaricus blazei Murrill

  • Kim, Yu-Jeong;Park, Sang-Ho;Yie, Se-Won;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.343-348
    • /
    • 2005
  • The partial nucleotide sequences of the genomic dsRNA mycoviruses infecting Pleurotus ostreatus (isolates ASI2596, ASI2597, and Bupyungbokhoe) and Agaricus blazei Murrill were determined and compared with those of the other dsRNA mycoviruses. Partial nucleotide sequences of the purified dsRNA from ASI2596 and ASI2597 revealed RNA-dependent RNA polymerase sequences that are closely related to Oyster mushroom isometric virus 2, while nucleotide sequences and the deduced amino acid sequence from dsRNA mycovirus infecting Agaricus blazei did not show any significant homology to the other dsRNA mycoviruses. Specific primers were designed for RT-PCR detection of these dsRNA viruses and were found to specifically detect each dsRNA virus. Northern blot analysis confirmed the homogeneity of RT-PCR products to each purified dsRNA. Altogether, our results suggest that these virus-specific primer sets can be employed for the specific detection of each dsRNA mycovirus in infected mushrooms.