• 제목/요약/키워드: Molecular Detection

검색결과 1,108건 처리시간 0.042초

Kabuki syndrome: clinical and molecular characteristics

  • Cheon, Chong-Kun;Ko, Jung Min
    • Clinical and Experimental Pediatrics
    • /
    • 제58권9호
    • /
    • pp.317-324
    • /
    • 2015
  • Kabuki syndrome (KS) is a rare syndrome characterized by multiple congenital anomalies and mental retardation. Other characteristics include a peculiar facial gestalt, short stature, skeletal and visceral abnormalities, cardiac anomalies, and immunological defects. Whole exome sequencing has uncovered the genetic basis of KS. Prior to 2013, there was no molecular genetic information about KS in Korean patients. More recently, direct Sanger sequencing and exome sequencing revealed KMT2D variants in 11 Korean patients and a KDM6A variant in one Korean patient. The high detection rate of KMT2D and KDM6A mutations (92.3%) is expected owing to the strict criteria used to establish a clinical diagnosis. Increased awareness and understanding of KS among clinicians is important for diagnosis and management of KS and for primary care of KS patients. Because mutation detection rates rely on the accuracy of the clinical diagnosis and the inclusion or exclusion of atypical cases, recognition of KS will facilitate the identification of novel mutations. A brief review of KS is provided, highlighting the clinical and genetic characteristics of patients with KS.

Complete Sequence Analysis of a Korean Isolate of Chinese Yam Necrotic Mosaic Virus and Generation of the Virus Specific Primers for Molecular Detection

  • Kwon, Sun-Jung;Cho, In-Sook;Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • 식물병연구
    • /
    • 제22권3호
    • /
    • pp.194-197
    • /
    • 2016
  • Chinese yam necrotic mosaic virus (CYNMV) is one of the most widespread viruses in Chinese yam (Dioscorea opposita Thunb.) and causes serious yield losses. Currently, genetic information of CYNMV is very restricted and complete genome sequences of only two isolates (one from Japan and another from China) have been reported. In this study, we determined complete genome sequence of the CYNMV isolate AD collected from Andong, Korea. Genetic analysis of the polyprotein amino acid sequence revealed that the Korean isolate AD has high similarity with the Japanese isolate PES3 (97%) but relatively low similarity with the Chinese isolate FX1 (78%). Phylogenetic analysis using the CYNMV 3' proximal nucleotide sequences harboring the coat protein and 3' untranslated region further supported genetic relationship among the CYNMV isolates. Based on comparative analysis of the CYNMV genome sequences determined in this study and other previous studies, we generated molecular detection primers that are highly specific and efficient for CYNMV diagnosis.

열역학법을 이용한 DNA hybridization 특성 검출 및 해석 (Detection and Analysis of DNA Hybridization Characteristics by using Thermodynamic Method)

  • 김도균;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권6호
    • /
    • pp.265-270
    • /
    • 2002
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and application area. So, the improvement of DNA hybridization detection method is very important for the determination of this hybridization reaction. Several molecular biological techniques require accurate predictions of matched versus mismatched hybridization thermodynamics, such as PCR, sequencing by hybridization, gene diagnostics and antisense oligonucleotide probes. In addition, recent developments of oligonucleotide chip arrays as means for biochemical assays and DNA sequencing requires accurate knowledge of hybridization thermodynamics and population ratios at matched and mismatched target sites. In this study, we report the characteristics of the probe and matched, mismatched target oligonucleotide hybridization reaction using thermodynamic method. Thermodynamic of 5 oligonucleotides with central and terminal mismatch sequences were obtained by measured UV-absorbance as a function of temperature. The data show that the nearest-neighbor base-pair model is adequate for predicting thermodynamics of oligonucleotides with average deviations for $\Delta$H$^{0}$ , $\Delta$S$^{0}$ , $\Delta$G$_{37}$ $^{0}$ and T$_{m}$, respectively.>$^{0}$ and T$_{m}$, respectively.

펩타이드 질량 분석을 위한 전기 이온화 분사기의 제작 및 성능 평가 (Mass spectrometry analysis system with integrated micro electrospray ionization emitter for peptide detection)

  • 김민수;주황수;김병기;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1534-1535
    • /
    • 2007
  • This paper describes a novel microfluidic device with a microfabricated electrospray source for a sheathless electrospray ionization interface to a mass spectrometer. This electrospray ionization-mass spectrometry (ESI-MS) device consists of a triangular-shaped metal emitter, allowing the generation of an efficient electrospray for peptide detection, and microfluidic channels monolithically in a glass microchip. The performance of the proposed interface was evaluated by opimizing its experimental condition and spraying standard peptides. The spraying has high signal strength and stability, with a relative standard deviation of 2.9% and singly-charged and doubly-charged peaks of the peptides were successfully detected. The metal emitter source showed a good performance to be comparable to commercially available emitters in signal strength and stability.

  • PDF

Nucleic acid-based molecular diagnostic testing of SARS-CoV-2 using self-collected saliva specimens

  • Hwang, Eurim C.;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Since the outbreak of coronavirus disease 2019 (COVID-2019), the infection has spread worldwide due to the highly contagious nature of severe acute syndrome coronavirus (SARS-CoV-2). To manage SARS-CoV-2, the development of diagnostic assays that can quickly and accurately identify the disease in patients is necessary. Currently, nucleic acid-based testing and serology-based testing are two widely used approaches. Of these, nucleic acid-based testing with quantitative reverse transcription-PCR (RT-qPCR) using nasopharyngeal (NP) and/or oropharyngeal (OP) swabs is considered to be the gold standard. Recently, the use of saliva samples has been considered as an alternative method of sample collection. Compared to the NP and OP swab methods, saliva specimens have several advantages. Saliva specimens are easier to collect. Self-collection of saliva specimens can reduce the risk of infection to healthcare providers and reduce sample collection time and cost. Until recently, the sensitivity and accuracy of the data obtained using saliva specimens for SARS-CoV-2 detection was controversial. However, recent clinical research has found that sensitive and reliable data can be obtained from saliva specimens using RT-qPCR, with approximately 81% to 95% correspondence with the data obtained from NP and OP swabs. These data suggest that self-collected saliva is an alternative option for the diagnosis of COVID-19.

Real-time identification of the separated lanthanides by ion-exchange chromatography for no-carrier-added Ho-166 production

  • Aran Kim;Kanghyuk Choi
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.69-77
    • /
    • 2021
  • No-carrier-added holmium-166 (n.c.a 166Ho) separation is performed based on the results of separation conditions using stable isotopes dysprosium (Dy) and holmium (Ho) to minimize radioactive waste from separation optimization procedures. Successful separation of two adjacent lanthanides was achieved by cation-exchange chromatography using a sulfonated resin in the H+ form (BP-800) and α-hydroxyisobutyric acid (α-HIBA) as eluent. For the identification process after separation of stable isotopes, the use of chromogenic reagents alternatively enables on-line detection because the lanthanides are hardly absorb light in the UV-vis region or exhibit radioactivity. Four different chromogenic reagents were pre-tested to evaluate suitable coloring reagents, of which 4-(2-Pyridylazo)resorcinol is the most recommendable considering the sensitivity and specificity for lanthanides. Lanthanide radioisotopes (RI) were monitored for separation with an RI detector using a lab-made separation LC system. Under the proper separation conditions, the n.c.a 166Ho was effectively obtained from a large amount of 100 mg dysprosium target within 2 hrs.

선박평형 수 내 유해 와편모조류(Dinophyceae)의 분자생물학적 검출 (Molecular Detection of Harmful Dinoflagellates (Dinophyceae) in Ballast Water)

  • 박태규;김성연
    • 한국해양학회지:바다
    • /
    • 제15권1호
    • /
    • pp.36-40
    • /
    • 2010
  • 선박평형 수는 유독 와편모조류 및 다양한 미세조류의 국제적인 이동경로로 알려져 있다. 본 연구에서는 선박평형 수에 있는 와편모조류의 다양성을 조사하기 위하여 와편모조류 특이적인 PCR primer와 종 특이적인 real-time PCR 유전자 탐침자를 이용하였다. 선박평형 수 시료에 대한 광학현미경 조사에서는 와편모조류가 매우 낮은 농도로 관찰되었지만, SSU rDNA의 cloning 및 염기서열 분석 결과에서는 기생 와편모조류, 초미세플랑크톤, 어패류 폐사 원인종 등 다양한 종류가 확인되었다. 본 연구 결과는 종 톡이적 PCR primer와 같은 분자생물학적 방법이 선박 평형 수에 외래 유입종의 신속 정확한 진단에 유용함을 보여주고 있다.

Calnexin as a dual-role biomarker: antibody-based diagnosis and therapeutic targeting in lung cancer

  • Soyeon Lim;Youngeun Ha;Boram Lee;Junho Shin;Taiyoun Rhim
    • BMB Reports
    • /
    • 제57권3호
    • /
    • pp.155-160
    • /
    • 2024
  • Lung cancer carries one of the highest mortality rates among all cancers. It is often diagnosed at more advanced stages with limited treatment options compared to other malignancies. This study focuses on calnexin as a potential biomarker for diagnosis and treatment of lung cancer. Calnexin, a molecular chaperone integral to N-linked glycoprotein synthesis, has shown some associations with cancer. However, targeted therapeutic or diagnostic methods using calnexin have been proposed. Through 1D-LCMSMS, we identified calnexin as a biomarker for lung cancer and substantiated its expression in human lung cancer cell membranes using Western blotting, flow cytometry, and immunocytochemistry. Anti-calnexin antibodies exhibited complement-dependent cytotoxicity to lung cancer cell lines, resulting in a notable reduction in tumor growth in a subcutaneous xenograft model. Additionally, we verified the feasibility of labeling tumors through in vivo imaging using antibodies against calnexin. Furthermore, exosomal detection of calnexin suggested the potential utility of liquid biopsy for diagnostic purposes. In conclusion, this study establishes calnexin as a promising target for antibody-based lung cancer diagnosis and therapy, unlocking novel avenues for early detection and treatment.

호흡기 감염병 진단 기술 동향 (Trends in Diagnostic Technology for Respiratory Infectious Disease)

  • 박정원;서홍석;허철;박수준
    • 전자통신동향분석
    • /
    • 제39권4호
    • /
    • pp.54-62
    • /
    • 2024
  • The emergence and resurgence of novel respiratory infectious diseases since the turn of the millennium, including SARS, H1N1 flu, MERS, and COVID-19, have posed a significant global health threat. Efforts to combat these threats have involved various approaches, however, continued research and development are crucial to prepare for the possibility of emerging viruses and viral variants. Direct detection methods for viral pathogens include molecular diagnostic techniques and immunodiagnostic methods, while indirect diagnostic methods involve detecting changes in the condition of infected patients through imaging diagnostics, gas analysis, and biosignal measurement. Molecular diagnostic techniques, utilizing advanced technologies such as gene editing, are being developed to enable faster detection than traditional PCR methods, and research is underway to improve the efficiency of diagnostic devices. Diagnostic technologies for infectious diseases continue to evolve, and several key trends are expected to emerge in the future. Automation will facilitate widespread adoption of rapid and accurate diagnostics, portable diagnostic devices will enable immediate on-site diagnosis by healthcare professionals, and advancements in AI-based deep learning diagnostic models will enhance diagnostic accuracy.

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

  • Dua, Pooja;Ren, Shuo;Lee, Sang Wook;Kim, Joon-Ki;Shin, Hye-su;Jeong, OK-Chan;Kim, Soyoun;Lee, Dong-Ki
    • Molecules and Cells
    • /
    • 제39권11호
    • /
    • pp.807-813
    • /
    • 2016
  • Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.