• Title/Summary/Keyword: Molecular Characteristics

Search Result 2,994, Processing Time 0.034 seconds

Prevalence and molecular characteristics of carbapenem-resistant Escherichia coli isolated from dogs in South Korea

  • Bo-Youn Moon;Md. Sekendar Ali;Seunghoe Kim;Hee-Seung Kang;Ye-Ji Kang;Jae-Myung Kim;Dong-Chan Moon;Suk-Kyung Lim
    • Journal of Veterinary Science
    • /
    • v.25 no.5
    • /
    • pp.67.1-67.8
    • /
    • 2024
  • Importance: Carbapenem-resistant Enterobacteriaceae are emerging as a global public health risk. Therefore, assessing the prevalence of carbapenem-resistant Escherichia coli (CRE) in both humans and animals is important. Objective: We aimed to ascertain the occurrence and characteristics of CRE isolated from companion animals, dogs and cats. Methods: E. coli strains were tested for antimicrobial susceptibility using the broth microdilution technique. Antimicrobial resistance genes were detected by polymerase chain reaction and sequencing analysis. The molecular characteristics of CRE were determined using multi-locus sequence typing, replicon typing, and pulsed-field gel electrophoresis (PFGE). Results: In total, 13 CRE isolates (0.13%) were identified from dogs possessing blaNDM-5 along with β-lactamase genes, mostly blaCMY-2 (92.2%) and blaTEM-1 (53.8%). The commonly observed mutations were S83L and D87N in gyrA, S80I in parC, and S458A in parE. CRE carried non-beta-lactam resistance genes, with the majority being tet(B) (100%), sul (84.6%), and aac(3)-II (53.8%). Nine different PFGE patterns (P1-P9), IncX3-type plasmids (69.2%), and ST410 (84.6%) were predominantly detected. Conclusions and Relevance: This investigation provides significant insight into the prevalence and molecular characteristics of blaNDM-5-carrying E. coli in dogs. The co-existence of blaNDM-5 and other antimicrobial resistance genes in E. coli potentially poses severe health hazards to humans.

Characteristics of Trypsin-like Protease and Metalloprotease Associated with Mycelium Differentiation of Streptomyces albidoflavus SMF301

  • Kang, Sung-Gyun;Kim, In-Seop;Jeong, Byung-Cheol;Ryu, Jae-Gon;Rho, Yong-Taik;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.307-314
    • /
    • 1995
  • Trypsin like protease (TLP) and metalloprotease (MTP) were induced in associated with the mycelium differentiation in Streptomyces albidoflavus SMF301. TLP and MTP were purified and characterized from the culture. The molecular mass of TLP and MTP were estimated to be 32 kDa and 18 kDa, respectively. The molecular mass of TLP and MTP were estimated to be 32 kDa and 18 kDa, respectively. The optimum pH and temperature of TLP were 10 and 40.$^{\circ}C$ Those of MTP were 8 and 55 $^{\circ}C$ TLP was stable at alkaline pH (6-9) and unstable above 45.$^{\circ}C$and MTP was stable at alkaline pH and unstable above 80.$^{\circ}C$ Km and Vmax values with benzoyl-arginyl p-nitroanilide of TLP were 139 $\mu$M, and 10 nmole of nitroanilide released per min per$\mu\textrm{g}$ protein, respectively. Km, and Vmax values with a synthetic substrate, leucine p-nitroanilide, or MTP were 58.9 $\mu$M, 3.47 nmol of nitroanilide released per min per$\mu\textrm{g}$protein, respectively. TLP was inhibited competitively by leupeptin; the inhibition constant was 0.0031 $\mu$M. MTP was inhibited by EDTA, phenonthroline and bestatin.

  • PDF

Insights into structural vaccinology harnessed for universal coronavirus vaccine development

  • Chin Peng Lim;Chiuan Herng Leow;Hui Ting Lim;Boon Hui Kok;Candy Chuah;Jonas Ivan Nobre Oliveira;Malcolm Jones;Chiuan Yee Leow
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.3
    • /
    • pp.202-217
    • /
    • 2024
  • Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.

A Study of Characteristics of Water Droplets on Various Nanoscale Structures Using Molecular Dynamics (분자동역학을 이용한 다양한 구조물 위의 수액적의 특성에 대한 연구)

  • Lee, Kwang Ho;Kwon, Tae Woo;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • This study numerically investigated statistic and dynamic behaviors of the water droplet on plate with or without various structured-pillars at nano-scale by molecular dynamics simulation. This study considered smooth plate, plate with the rectangular-structured pillar, and the plate with dual-structured pillar under various characteristic energy conditions. The static behavior of water droplet depending on the plate shape, plate surface energy, and the pillar characteristics were examined. After the water droplet reaches its steady state, this study investigated the dynamic behavior of the water droplet by applying a constant force. Finally, this study investigated the static and dynamic behaviors of the water droplet by measuring its contact angle and contact angle hysteresis. As a result, we found that the structure was more hydrophobic.

Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica

  • Chae, Hyunsik;Lim, Sooyeon;Kim, Han Soon;Choi, Han-Gu;Kim, Ji Hee
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.267-275
    • /
    • 2019
  • Three new species of the genus Micractinium were collected from five localities on the South Shetland Islands in maritime Antarctica, and their morphological and molecular characteristics were investigated. The vegetative cells are spherical to ellipsoidal and a single chloroplast is parietal with a pyrenoid. Because of their simple morphology, no conspicuous morphological characters of new species were recognized under light microscopy. However, molecular phylogenetic relationships were inferred from the concatenated small subunit rDNA, and internal transcribed spacer (ITS) sequence data indicated that the Antarctic microalgal strains are strongly allied to the well-supported genus Micractinium, including M. pusillum, the type species of the genus, and three other species in the genus. The secondary structure of ITS2 and compensatory base changes were used to identify and describe six Antarctic Micractinium strains. Based on their morphological and molecular characteristics, we characterized three new species of Micractinium: M. simplicissimum sp. nov., M. singularis sp. nov., and M. variabile sp. nov.

Molecular and Cultural Characterization of Colletotrichum spp. Causing Bitter Rot of Apples in Korea

  • Lee, Dong-Hyuk;Kim, Dae-Ho;Jeon, Young-Ah;Uhm, Jae-Youl;Hong, Seung-Beom
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.37-44
    • /
    • 2007
  • Colletotrichum contains many important pathogens which cause economically significant diseases of crops like pepper, strawberry, tomato and apple. Forty four isolates were collected to characterize the diversity of Colletotrichum causing apple anthracnose in various regions of Korea. They were analyzed by random amplified polymorphic DNA (RAPD), internal transcribed spacer (ITS) of rDNA and partial $\beta$-tubulin gene DNA sequence, and culture characteristics on PDA and PDA-Benomyl. From the results of molecular analyses, 31 strains belonged to Colletotrichum gloeosporioides, ribosomal DNA group (RG) 4 of Moriwaki et al. (2002), 8 strains belonged to C. acutatum, A2 group of Talhinhas et al. (2005) and 5 strains to C. acutatum, A3 group of Talhinhas et al. (2005). Most isolates of C. gloeosporioides RG4 grew faster on PDA than strains of C. acutatum, A2 and A3 groups and most RG4 strains were sensitive to Benomyl. However, a few strains of RG4 grew slower and were resistant to Benomyl. On the basis of molecular characteristics, apple isolates of C. acutatum were clearly differentiated from red pepper isolates of the species, but apple isolates of C. gloeosporioides were not.

Molecular characterizations of phosphoprotein of rabies virus circulating in Korea

  • Kim, Ha-Hyun;Yang, Dong-Kun;Jeon, Jeong Kuk;Cho, Soo-Dong;Song, Jae-Young
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Rabies is a major zoonotic disease that causes approximately 55,000 human deaths worldwide on an annual basis. The nucleocapsid protein and glycoprotein genes of the Korean rabies virus (RABV) have been subjected to molecular and phylogenetic analyses. Although the phosphoprotein (P) has several important functions in viral infection and pathogenicity, the genetic characterizations of the P of Korean RABV isolates have not yet been established. In the present study, we conducted genetic analyses of P genes of 24 RABV isolates circulating in the Republic of Korea (hereafter, Korea) from 2008 to 2011. This study revealed that the P genes of Korean RABVs are genetically similar to those of RABV strains of lyssavirus genotype I including V739 (dogs, Korea), NNV-RAB-H (humans, India), NeiMeng925 (raccoon dogs, China), and RU9.RD (raccoon dogs, Russia). Among Korean isolates, the RABV P genes showed low variability in the variable domains among Korean isolates; they had specific consensus sequences and amino acid substitutions capable of identifying geographic characteristics and retained specific sequences thought to be important for viral function. These results provide important genetic characteristics and epidemiological information pertaining to the P gene of the Korean RABV.

Fabrication and Electrical Characteristics of Ferredoxin Self-Assembled Layer for Biomolecular Electronic Device Application

  • NAM YUN SUK;CHOI JEONG-WOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.15-19
    • /
    • 2006
  • A ferredoxin adsorbed hetero self-assembled layer was fabricated on chemically modified Au substrate, 4-Aminothiophenol (4-ATP) was deposited onto Au substrate and then N-succinimidyl-3-[2-pyridyldithio] propionate (SPDP) was adsorbed on the 4-ATP layer, since SPDP was used as a bridging molecule for ferredoxin adsorption, Ferredoxin/SPDP/4-ATP structured hetero layer was constructed because of strong chemical binding of ferredoxin, SPDP, and 4-ATP, The surface of the ferredoxin-adsorbed SPDP/4-ATP layer was observed by scanning tunneling microscopy, The hetero film formation was verified by surface plasmon resonance measurement. The current flow and rectifying property based on the scanning tunneling spectroscopy I-V characteristics was achieved in the proposed hetero layer. Thus, the hetero layer structure of ferredoxin functioned as a molecular diode with rectifying property, The proposed molecular diode can be usefully applied for the development of molecular scale electronic devices.

Simulation of material failure behavior under different loading rates using molecular dynamics

  • Kim, Kunhwi;Lim, Jihoon;Kim, Juwhan;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.177-190
    • /
    • 2008
  • Material failure behavior is generally dependent on loading rate. Especially in brittle and quasi-brittle materials, rate dependent material behavior can be significant. Empirical formulations are often used to predict the rate dependency, but such methods depend on extensive experimental works and are limited by practical constraints of physical testing. Numerical simulation can be an effective means for extracting knowledge about rate dependent behavior and for complementing the results obtained by testing. In this paper, the failure behavior of a brittle material under different loading rates is simulated by molecular dynamics analysis. A notched specimen is modeled by sub-million particles with a normalization scheme. Lennard-Jones potential is used to describe the interparticle force. Numerical simulations are performed with six different loading rates in a direct tensile test, where the loading velocity is normalized to the ratio of the pseudo-sonic speed. As a consequence, dynamic features are achieved from the numerical experiments. Remarkable failure characteristics, such as crack surface interaction/crack arrest, branching, and void nucleation, vary in case of the six loading cases. These characteristics are interpreted by the energy concept approach. This study provides insight into the change in dynamic failure mechanism under different loading rates.

Experimental Study on the Effect of Plasma Reactor Type on Corona Discharge and NO-NO2 Conversion Characteristics (플라즈마 반응기구조에 따른 코로나방전 및 NO-NO$_2$ 전환특성에 관한 실험적 연구)

  • 박용성;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.65-71
    • /
    • 2002
  • Characteristics of corona discharge of the different types of the plasma reactors which are cone-hole and cone-plate is investigated experimentally. The discharge starts at lower voltage for the cathode corona than the anode corona and spark occurs at higher voltage for the cathode corona. And the cathode corona makes more stable discharge than the anode corona. The effect of the base gas in corona discharge for different O$_2$/N$_2$ concentrations is related with the gas molecular weight. The discharge for the smaller molecular weight gas occurs easier than for the high molecular weight gas. The discharge current decreases with the increase of oxygen concentration and it increases more sharply for anode corona than for cathode corona as discharge voltage increases after corona onset voltage. NO-NO$_2$ conversion increases with the energy density of corona discharge and the addition of O$_2$ in a base N$_2$ gas.