DOI QR코드

DOI QR Code

Molecular and Cultural Characterization of Colletotrichum spp. Causing Bitter Rot of Apples in Korea

  • Lee, Dong-Hyuk (Apple Experiment Station, National Horticultural Research Institute) ;
  • Kim, Dae-Ho (Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, RDA) ;
  • Jeon, Young-Ah (Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, RDA) ;
  • Uhm, Jae-Youl (School of Applied Biology and Chemistry, Kyungpook National University) ;
  • Hong, Seung-Beom (Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, RDA)
  • Published : 2007.06.30

Abstract

Colletotrichum contains many important pathogens which cause economically significant diseases of crops like pepper, strawberry, tomato and apple. Forty four isolates were collected to characterize the diversity of Colletotrichum causing apple anthracnose in various regions of Korea. They were analyzed by random amplified polymorphic DNA (RAPD), internal transcribed spacer (ITS) of rDNA and partial $\beta$-tubulin gene DNA sequence, and culture characteristics on PDA and PDA-Benomyl. From the results of molecular analyses, 31 strains belonged to Colletotrichum gloeosporioides, ribosomal DNA group (RG) 4 of Moriwaki et al. (2002), 8 strains belonged to C. acutatum, A2 group of Talhinhas et al. (2005) and 5 strains to C. acutatum, A3 group of Talhinhas et al. (2005). Most isolates of C. gloeosporioides RG4 grew faster on PDA than strains of C. acutatum, A2 and A3 groups and most RG4 strains were sensitive to Benomyl. However, a few strains of RG4 grew slower and were resistant to Benomyl. On the basis of molecular characteristics, apple isolates of C. acutatum were clearly differentiated from red pepper isolates of the species, but apple isolates of C. gloeosporioides were not.

Keywords

References

  1. Brooker, A C., Sreenivasaprasad, S. and Timmer, L. W. 1991. Molecular characterization of slow-growing orange and key lime anthracnose strains of Colletotrichum from citrus as C. acutatum. Phytopathology 86:523-527 https://doi.org/10.1094/Phyto-86-523
  2. Freeman, S., Katan, T. and Shabi, E. 1998. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant. Dis. 82:596-605 https://doi.org/10.1094/PDIS.1998.82.6.596
  3. Freeman, S., Pham, M. and Rodriguez, R. J. 1993. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A+T-rich DNA, and nuclear DNA analyses. Exp. Mycol. 17:309-322 https://doi.org/10.1006/emyc.1993.1029
  4. Glass, N. L. and Donaldson, G C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323-1330
  5. Kang, B. K, Min, J. Y., Kim, Y. S., Park, S. W, Nguyen, V. B. and Kim, H. T. 2005. Semi-selective medium for monitoring Colletotrichum acutatum causing pepper anthracnose in the field. Res. Plant Dis. 11 :21-27 (in Korean) https://doi.org/10.5423/RPD.2005.11.1.021
  6. Kang, H. W, Park, D. S. and Eun, M. Y. 2002. Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice. Mol. Cells 13:281-287
  7. Kim, D. H., Jeon, Y. A, Go, S. J., Lee, J. K and Hong, S. B. 2006. Reidentification of Colletotrichum gloeosporioides and C. acutatum isolates stored in Korean Agricultural Culture Collection (KACC). Res. Plant Dis. 12:168-177 (in Korean) https://doi.org/10.5423/RPD.2006.12.3.168
  8. Kim, J.T., Park, S. K, Choi, W. B., Lee, Y. H. and Kim, H. T. 2003. Identification of Colletotrichum spp. associated with pepper anthracnose in Korea. Plant Pathol. J. 19:331 (abstr.)
  9. Kumar, S., Tamura, K and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5:150-163 https://doi.org/10.1093/bib/5.2.150
  10. Lee, D. H. 1994. Etiological characteristics of Colletotrichum acutatum, C. gloeosporioides and Glomerella cingulata isolated from apples. Korean J. Plant Pathol. 10: 105-111
  11. Lee, D. H., Lee, S. W, Choi, K. H., Kim, D. A. and Uhm, J. Y. 2006. Survey on the occurrence of apple diseases in Korea from 1992 to 2000. Plant Pathol. J. 22:375-380 https://doi.org/10.5423/PPJ.2006.22.4.375
  12. Lee, S. B. and Taylor, J. W. 1990. Isolation of DNA from fungal mycelia and single spores. In: PCR Protocols: a guide to methods and applications. ed. by M. A Innis, D. H. Gelfand, J. J. Sinsky, T. J. White, pp. 282-287, Academic Press, New York, USA
  13. Lubbe, C. M., Denman, S., Cannon, P. E, Groenewald, J. Z., Lamprecht, S. C. and Crous, P. W. 2004. Characterization of Colletotrichum species associated with diseases of Proteaceae. Mycologia 96:1268-1279 https://doi.org/10.2307/3762144
  14. Maymon, M., Zveibil, A, Minz, D., Pivonia, S. and Freeman, S. 2006. Identification and characterization of Benomyl-resistant and -sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology 96:542-548 https://doi.org/10.1094/PHYTO-96-0542
  15. Moriwaki, J., Tsukiboshi, T. and Sato, T. 2002. Grouping of Colletotrichum species in Japan based on rDNA sequences. J. Gen. Plant Pathol. 68:307-320 https://doi.org/10.1007/PL00013096
  16. O'Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7:103-116 https://doi.org/10.1006/mpev.1996.0376
  17. Singh, J. P. and Sharma, S. K. 1982. Controlling anthracnose of guava caused by Glomerella cingulata by fumigation. Indian Phytopath. 35:273
  18. Sreenivasaprasad, S., Mills, P. R., Meehan, B. M. and Brown, A. E. 1996. Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome 39:499-512 https://doi.org/10.1139/g96-064
  19. Sutton, B. C. 1980. Colletotrichum. In: The Coelomycetes. ed. by B. C. Sutton, pp. 523-536. Commenwealth Mycological Institute, Kew, Surrey, England
  20. Sutton, B. C. 1992. The genus Glomerella and its anamorph Colletotrichum. In: Colletotrichum: Biology, Pathology and Control. ed. by J. A Bailey and M. J. Jeger, pp. 1-26. CAB International, Wallingford, UK
  21. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J. and Oliveira, H. 2002. Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology 92:986-996 https://doi.org/10.1094/PHYTO.2002.92.9.986
  22. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J. and Oliveira, H. 2005. Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Appl. Environ. Microbiol. 71:2987-2998 https://doi.org/10.1128/AEM.71.6.2987-2998.2005
  23. The Korean Society of Plant Pathology. 2004. List of plant diseases in Korea (4th ed.). pp. 354-361
  24. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity if progressive multiple sequence alignment though sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids. Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
  25. White, T. J., Bruns, T. D., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications. ed. by M. A Innis, D. H. Gelfand, J. J. Sinsky and T. J. White, pp. 315-322. Academic Press, New York, USA

Cited by

  1. Survival of pathogenic Colletotrichum isolates on dormant buds, twigs and fallen leaves of apple trees in commercial orchards vol.72, pp.3, 2017, https://doi.org/10.17660/th2017/72.3.5
  2. Morphological Variations, Genetic Diversity and Pathogenicity of Colletotrichum species Causing Grape Ripe Rot in Korea vol.24, pp.3, 2008, https://doi.org/10.5423/PPJ.2008.24.3.269
  3. Colletotrichum – current status and future directions vol.73, 2012, https://doi.org/10.3114/sim0014
  4. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits vol.17, pp.12, 2016, https://doi.org/10.1631/jzus.B1600117
  5. The Colletotrichum acutatum species complex vol.73, 2012, https://doi.org/10.3114/sim0010
  6. Biological Control of Apple Anthracnose by Paenibacillus polymyxa APEC128, an Antagonistic Rhizobacterium vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.OA.01.2016.0015
  7. Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil vol.120, pp.4, 2016, https://doi.org/10.1016/j.funbio.2016.01.011
  8. vol.46, pp.2, 2018, https://doi.org/10.1080/12298093.2018.1478220
  9. Simultaneous Determination of Pyraclostrobin, Prochloraz, and its Metabolite in Apple and Soil Via RRLC-MS/MS vol.11, pp.5, 2018, https://doi.org/10.1007/s12161-017-1065-1