• Title/Summary/Keyword: Molding System

Search Result 675, Processing Time 0.03 seconds

Replication of High Density Patterned Media (고밀도 패턴드 미디어 성형에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

Simulation of injection-compression molding for thin and large battery housing

  • Kwon, Young Il;Lim, Eunju;Song, Young Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1451-1457
    • /
    • 2018
  • Injection compression molding (ICM) is an advantageous processing method for producing thin and large polymeric parts in a robust manner. In the current study, we employed the ICM process for an energy-related application, i.e., thin and large polymeric battery case. A mold for manufacturing the battery case was fabricated using injection molding. The filling behavior of molten polymer in the mold cavity was investigated experimentally. To provide an in-depth understanding of the ICM process, ICM and normal injection molding processes were compared numerically. It was found that the ICM had a relatively low filling pressure, which resulted in reduced shrinkage and warpage of the final products. Effect of the parting line gap on the ICM characteristics, such as filling pressure, clamping force, filling time, volumetric shrinkage, and warpage, was analyzed via numerical simulation. The smaller gap in the ICM parting line led to the better dimensional stability in the finished product. The ICM sample using a 0.1 mm gap showed a 76% reduction in the dimensional deflection compared with the normal injection molded part.

Simulation Study on the Effect of Pre-blow Timing on the Injection Stretch Blow Molding

  • Dong-Hae Choi;Kyoung Woo Nam;Min-Young Lyu
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.138-146
    • /
    • 2022
  • Research on the reduction of plastic use to prevent environmental pollution is urgently needed. Accordingly, studies on reducing the weight of polyethylene terephthalate (PET) bottles are currently being conducted. PET bottles are fabricated by injection stretch blow molding. In this study, stretch blow molding for fabricating PET bottles using preform studied through a computer simulation. Blowing characteristics are analyzed by varying the start time of the pre-blow, which is one of the process conditions of stretch blow molding. Simulation results and the preform inflation process are presented, and the parameters of stretch ratio, stretching path, thickness distribution, and weight distribution of blown PET bottles are investigated.

A Study on the Manufacturing Technology of the Aspheric Lens using Injection Molding (사출금형을 이용한 비구면 렌즈의 제조기술에 관한 연구)

  • Choi H. Z.;Lee S. W.;Kang E. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.76-83
    • /
    • 2002
  • The injection molding of the plastic optics is basically same as the conventional molding except it requires very intricate control of all the molding processing parameters. In the plastic optics, the problem of injection molding is the shrinkage. The shrinkage must be removed and predicted. This shrinkage is becoming more important than any other problems in precision molding because it can affect the focal length of a lens or the total performance of the optical system. This study focused on avoiding the shrinkage that the mold design allows for the optics. In making mold, the surface accuracy(P-V) of the lower and lower mold are $0.201{\mu}m\;and\;0.434{\mu}m$ respectively. A surface roughness(Ra) is below $0.02{\mu}m$ due to selecting the appropriate tools and using the injection molding machine in high degree. In injection molding of the plastic lens, mold temperature, resine temperature and injecting pressure are important process parameters. Injection molding process is carried out according to varying mold temperature and injecting pressure. As a result P-V(peak to valley) of spheric lens is $3.478{\mu}m$ and that of aspheric lens is $1.786{\mu}m$.

  • PDF

Study on Optimization for Heating System of Sequential Feed-Type Mobile Smart Device Cover Glass Molding Machine (모바일 스마트 기기 덮개 유리 순차이송형 성형기기의 가열시스템 최적화에 관한 연구)

  • Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.75-80
    • /
    • 2015
  • Nowadays, flat-shaped cover glass is widely used for mobile devices. However, for its good design and convenience of use, curved cover glass has been demanded. Thus, many companies have tried to produce curved cover glass through the shaving technique, but the production efficiency is very low. Therefore, the molding technique has been adopted to increase the efficiency for the curved-glass production system. For a glass-molding system, several heating blocks are installed, and the flat cover glass is sequentially heated and molded. The production time for the cover glass is very different depending on the heating conditions; thus, the prediction of the production time for different heating conditions should be needed. Therefore, in this study, the computations were performed with different heating conditions (uniform and non-uniform) in the present cover glass-molding machine. For uniform and non-uniform heating conditions, the simple correlation between the heating time and the heater capacity and the heating time to achieve higher durability can be suggested, respectively.

Design of Gate Location in Injection Molding of a Dashboard Using Dummy Runner (모조 러너를 이용한 계기판 사출성형의 게이트 위치 설계)

  • Han, Gyeong-Hui;Choe, Du-Sun;Kim, Hong-Seok;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1575-1582
    • /
    • 2001
  • Injection molding is widely used in producing various plastic parts due to its high productivity, and the demand for injection molded products with high precision is increasing. To achieve successful product quality and precision, the design of gating and runner system in injection mold is very important because it influences the melt flow into the cavity. Some deflects, such as weld lines and overpacking, can be effectively controlled with proper selection of gate locations. In the present study, the design of gate locations in injection molding of a dashboard fur automobiles was carried out with CAMP mold, a PC-based simulation system for injection molding. A dummy runner system was developed to simulate a runner system in order to increase the efficiency of the analysis procedure. The numbers and locations of gates were iteratively determined in the present investigation. In this procedure, an acceptable design was obtained in terms of reducing the maximum pressure and clamping force.

Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding (마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형)

  • Moon S.;Ahn S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

A Study on Optimal Solution of Short Shot Using Modular Fuzzy Logic Based Neural Network (MENN) (모듈형 퍼지-신경망을 이용한 미성형 사출제품의 최적 해결에 관한 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.465-469
    • /
    • 2001
  • In injection molding short shot is one of the frequent and fatal defects. Experts of Injection molding usually adjust process conditions such as injection time, mold temperature, and melt temperature because it is most economic way in time and cost. However, it is difficult task to find appropriate process conditions for troubleshooting of short shot as injection molding process is a highly nonlinear system and process conditions are coupled. In this paper, a modular fuzzy neural network (MFNN) has been applied to injection molding process to shorten troubleshooting time of short shot. Based on melt temperature and fill time, a reasonable initial mo이 temperature is recommenced by the NFNN, and then the mold temperature is inputted to injection molding process. Depending on injection molding result, specifically the insufficient quantity of an injection molded part. and appropriate mold temperature is recommend repeatedly through the NFNN.

  • PDF

The Effect of Filling Imbalances on the Molding Quality in the Multy-Cavity Injection Mold (다수캐비티 사출금형에서 충전 불균형이 성형 품질에 미치는 영향)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • The injection molding process is a predominant method for producing plastic parts. In order to maximize productivity and molding quality in a injection mold, it is important that each cavity in a multi-cavity injection mold is identical. This requires that cavity dimensions should be identical and delivery system of melt to each cavity have to be the same. Despite the geometrically balanced layout in multi-cavity injection mold more than 4 cavities, it has been observed that the filling in each cavity results in imbalances. Most of cases, this phenomenon of filling imbalances have a bad effect on dimension accuracy, warpage, molding appearance and strength of molding parts. In this study, experiment were conducted to investigate the effect of filling imbalances on the molding quality(surface gloss, shrinkage, tensile strength) in the multy-cavity injection mold.

  • PDF

Linear Structural Analysis and Simple Tensile Test of Plastic Injection Molding Tensile Specimen (플라스틱 사출인장시편의 단순인장시험 및 선형구조해석)

  • Lee, D.M.;Han, B.K.;Lee, Sung-Hee
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.230-233
    • /
    • 2006
  • In this study, the effects of residual stress induced by plastic injection molding process on the tensile behavior of plastic tensile test specimen were investigated. To manufacture plastic tensile test specimens, an injection mold based on the international standard system was designed and made. Cavity pressure and temperature sensors were installed inside of the presented mold to monitor pressure and temperature values during the cycle of injection molding. Injection molding simulation was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress. It was shown that the residual stress induced by injection molding has an effect on the experiment of tensile test and linear structural tensile simulation.

  • PDF