• Title/Summary/Keyword: Molding Conditions

Search Result 559, Processing Time 0.024 seconds

Examination of heat resistant tensile properties and molding conditions of green composites composed of kenaf fibers and PLA resin

  • Ben, Goichi;Kihara, Yuichi;Nakamori, Keita;Aoki, Yoshio
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.361-376
    • /
    • 2007
  • Disposing of conventional fiber-reinforced polymers (FRPs) poses an environmentally challenging problem. Disposal of FRPs by combustion discharges carbon dioxide in the air because the resin of FRPs is made of fossil fuel. When they are disposed of in the ground, FRPs remain semipermanently without decomposing. In response to these problems, green composites are now being developed and are extensively studied as a material that produces a lower environmental burden. In this paper, green composites using kenaf fiber yarn bundles and PLA (poly(lactic acid)) are fabricated and their tensile properties are evaluated in the experiment. The tensile Young's modulus of all of the laminations is larger than that of PLA alone and the tensile strength of some laminations is larger than that of PLA alone. In particular, the value of UD composite of $0^{\circ$ shows double the tensile strength of PLA alone. Furthermore, the molding conditions for fabricating with a hot press are investigated and the heat resistant tensile properties of green composites are also reported.

Optimization of the Deflection for large Disk type Gear of Auto Phoropter (자동굴절검사기용 대형 원판형 기어의 변형 최적화)

  • Jung, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.370-376
    • /
    • 2011
  • Recently, the application range of plastic gears is widely expanding by the development of engineering plastics with good mechanical properties. Plastic gears have excellent performances such as light weight, water resistance and vibration absorbing ability for metallic gears. In this study, the optimization of injection molding process was done for the large disk type plastic gears of auto phoropter. Design Of Experiment (Taguchi method) was adopted to find a tendency of molding conditions that influence the flatness of disk type gear. Four main factors for molding conditions were selected based on injection temperature, filling time, packing pressure and mold temperature. Also, Filling, packing and cooling analyses were carried out to evaluate Z directional deflection of large disk type gear by using the simulation software (Moldflow) based on the DOE. From the results, it was found that the injection temperature and packing pressure are the most sensitive parameters for the Z directional deflection of large disk type gears.

Effect of Glass Fiber Contents on the Tensile Strength in Injection Molding Process (사출성형공정에서 유리섬유함유량이 인장강도에 미치는 영향)

  • 김영수;김인관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • The main target of this research is investigating the relations between mechanical properties and injection conditions, like injection pressure, packing pressure and packing time for various contents ratio of glass fiber and resin. In general idea, high injection pressure produces high strength of molded parts as a monotonic function. but it was revealed that high pressure does not make high strength directly through various experiments of injection molding. In this experiments, PA66 was selected as resin and Glass Fiber was selected as reinforcing fiber Fiber reinforcement was controlled, as 14%, 25%, 33%, 44% of total volume and packing pressure was divided 55%, 65%, 75%, 85% of reference pressure, i.e. 100% equal to 1400kgf/$\textrm{cm}^2$. Finally, tensile testing was executed for injected test specimen. Optimum results based on authors' experiments have been obtained under conditions of 25% and 33% of glass fiber contents. Tensile strength rather depends on the packing pressure and packing time than injection pressure. Especially almost equal value of tensile strength was obtained for various percentage of packing and injection pressure as 65%, 75% and 85% of reference pressure.

  • PDF

Development of Powder Injection Molding Process for a Piezoelectric PAN-PZT Ceramics

  • Han, Jun Sae;Park, Dong Yong;Lin, Dongguo;Chung, Kwang Hyun;Bollina, Ravi;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • A powder injection molding process is developed and optimized for piezoelectric PAN-PZT ceramics. Torque rheometer experiments are conducted to determine the optimal solids loading, and the rheological property of the feedstock is evaluated using a capillary rheometer. Appropriate debinding conditions are chosen using a thermal gravity analyzer, and the debound specimens are sintered using sintering conditions determined in a preliminary investigation. Piezoelectric performance measures, including the piezoelectric charge constant and dielectric constant, are measured to verify the developed process. The average values of the measured piezoelectric charge constant and dielectric constant are 455 pC/N and 1904, respectively. Powder injection molded piezoelectric ceramics produced by the optimized process show adequate piezoelectric performance compared to press-sintered piezoelectric ceramics.

A study on the measurement of cavity pressure and computer simulation (성형조건에 따른 캐비티 내압 측정 및 컴퓨터 모사)

  • Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, D.W.;Kim, K.Y.;Lyu, M.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.163-166
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software,Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

A Study on Pressing Conditions in the molding of Aspheric Glass Lenses for Phone Camera Module using Design of Experiments (DOE를 적용한 카메라폰 모듈용 비구면 Glass 렌즈의 가압성형조건 연구)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Lee, Jun-Key;Kim, Sang-Suk;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • This study investigated the pressing conditions in the molding of aspheric glass lenses for the mega pixel phone camera module using the DOE method. Tungsten carbide (WC; Japan, Everloy Co., 002K),which contained 0.5 w% cobalt (Co), was used to build the mold. The mold surface was ultra-precision ground and polished, and its form accuracy (PV) was 0.85um in aspheric surface. We selected four factors, pressing temperature, force and time of first step, and force of second step, respectively, as the parameters of the pressing process. in order to reduce the number of experiments, we applied fractional factorial design considering the main effects and two-way interactions. The analysis results indicate that the only two main effects, the pressing temperature and the time of pressing step 1, are available for the form accuracy (PV) of the molded lens. The analysis results indicated that the best combination of the factors for lowering the form accuracy(PV) value of molded lens was to have them at their low levels.

Investigation the tilling imbalance and dimensional variations of multi-cavity injection molded parts (다수 캐비티의 사출성형품에서 충전의 불균형과 치수편차의 고찰)

  • Kang, M.A.;Kim, Y.K.;Kim, J.M.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.266-270
    • /
    • 2007
  • Small injection molded articles such as lens and mobile product's parts are usually molded in multi-cavity mold. The problems occurred in multi-cavity molding are flow imbalance among the cavities. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced well the cavity imbalance is being developed. This comes from the unsuitable operational conditions of injection molding. Among the operational conditions, injection speed is the most significant process variable affecting the filling imbalances in multi-cavity injection molding. In this study, experimental study of flow imbalance has been conducted for various injection speeds and materials. Also, the filling Imbalances were compared with CAE results. The dimensions and physical state of multi-cavity molded parts were examined. The results showed that the filling imbalances vary according to the injection speed and flow property of resins. Subsequently, the imbalanced filling and pressure distribution in the multi-cavity affect on the dimensions and physical states of molded parts.

  • PDF

Fracture Toughness of IC Molding Compound Materials(II) (IC 몰딩 콤파운드 재료의 파괴 인성치(II))

  • 김경섭;신영의
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.353-357
    • /
    • 1998
  • Cracking problem of Epoxy Molding Compound(EMC) is critical for the reliability of the plastic package during temperature cycling and IR-reflow condition. Fracture toughness of EMC, which is defined as the resistance of EMC to the crack propagation, is a useful factor in ht estimation of EMC against package crack. Thus, development of EMC having high fracture toughness at a given loading condition would be important for confirming the integrity of package. In this study, toughness of several EMC was measured by varying the test conditions such as temperature, loading speeds, and weight percent of filler in order to quantify the variation of toughness of EMC under various applicable conditions. It was found from the experiments that toughness of all EMC has following trends, i.e., it rapidly decreases over the glass transition temperature, remains almost same or little decreases below $0^{\circ}C$. It decreases with the growth of cross head speed in EMC and the weight percent of filler as the degree of brittleness of EMC increases with the amount of filler content.

  • PDF

A study on the technology of in-mold punching process for integrated hole piercing of plastic hollow parts (플라스틱 중공부품의 일체화 성형을 위한 인몰드 펀칭 공정기술에 관한 연구)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • A study on in-mold punching technology for hole piercing during molding of hollow plastic parts was conducted. Considering the non-linearity of the HDPE plastic material, mechanical properties were obtained according to the change in temperature and load speed. A standard specimen for the in-mold punching test was designed to implement the in-mold punching process, and the specimen was obtained through injection molding. In order to analyze the influence of process variables during in-mold punching, an in-mold punching mold capable of controlling variables such as temperature and support pressure of the specimen was designed and manufactured. Mold heating characteristics were confirmed through finite element analysis, and punching simulations for changes in process conditions were performed to analyze punching characteristics and reflected in the experiment. Through simulations and experiments, it was found that the heating temperature, punch shape, punching speed, and pressure of the back side of the specimen were very important during in-mold punching of HDPE materials, and optimal conditions were acquired within a given range.

Optimization of Curing Pressure for Automatic Pressure Gelation Molding Process of Ultra High Voltage Insulating Spacers (초고압 절연 스페이서의 자동가압 겔화 성형 공정을 위한 경화 보압의 최적화 )

  • Chanyong Lee;Hangoo Cho;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.56-62
    • /
    • 2024
  • By introducing curing kinetics and chemo-rheology for the epoxy resin formulation for ultra-high voltage gas insulated switchgear (GIS) Insulating Spacers, a study was conducted to simulate the curing behavior, flow and warpage analysis for optimization of the molding process in automatic pressure gelation. The curing rate equation and chemo-rheology equation were set as fixed values for various factors and other physical property values, and the APG molding process conditions were entered into the Moldflow software to perform optimization numerical simulations of the three-phase insulating spacer. Changes in curing shrinkage according to pack pressure were observed under the optimized process conditions. As a result, it was confirmed that the residence time in the solid state was shortened due to the lowest curing reaction when the curing holding pressure was 3 bar, and the occurrence of deformation due to internal residual stress was minimized.