• Title/Summary/Keyword: Molding Condition

Search Result 325, Processing Time 0.023 seconds

A Study on Influence of PV and Ra with Re-Ir Coating of WC Core Surface for Glass Molding Lens (성형용 초경합금(WC) 코어면의 Re-Ir 코팅이 형상정도와 표면조도에 미치는 영향에 관한 연구)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.808-811
    • /
    • 2007
  • Aspheric glass lens have recently been used in camera phone module because they are more effective than spherical ones. In this paper, the grinding condition of the tungsten carbide molding core has been found after applying DOE to the development of the aspheric glass lens for the 3 Megapixel and 2.5x camera-phone module. Also, the ultra precision grinding process was investigated under this condition by experiment. Re-Ir coating was applied on the ground surface of the tungsten carbide molding core. The influence of Re-Ir coating on the form accuracy and surface roughness of molding core was compared and evaluated. The form accuracy and surface roughness of the molding core were improved by application of Re-Ir coating on the surface of the tungsten carbide molding core.

The Relation between Injection Molding Conditions and Gloss of ABS Molding (사출성형 조건과 ABS 성형품 광택의 관계)

  • Han, Seong-Ryeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5352-5356
    • /
    • 2013
  • Plastic product manufacturing industry has usually focused on a mechanical and physical characteristics of molding. Recently, not only these characteristics but also the aesthetic value is significantly considering. Especially, the molding's gloss, which we can easily distinguish, is an important aesthetic point. In this study, it were investigated that the gloss variation of ABS moldings by changing injection conditions such as injection pressures, injection speed, holding pressures melt and mold temperatures by injection molding experiment. The experimental results revealed that the holding pressure was the most active condition on gloss of ABS molding.

Prediction of Flash Generation in Two-Color Injection Molding using The Rapid Heat Cycle Molding Technology (금형 급속 가열-냉각이 적용된 이색사출성형의 플래쉬 발생 예측)

  • Park, H.P.;Cha, B.S.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • In case of thin-wall two-color injection molding, flashing often occurs when molten polymer flows into small gap at the parting line in mold with high pressure or under the unbalanced clamping force condition. In this study, flashing was examined in the production of thin-wall notebook case with large area when the rapid heat cycle molding (RHCM) technology was applied to the two-color injection molding. The effects of the RHCM technology on the part properties and weld-lines were compared with conventional injection molding. The flashing caused by the clamping device of the two-color injection molding machine was examined and compared by experiments and CAE analyses.

A study on optimum temperature depending on resin of injection molded parts (사출 성형품의 수지에 따른 최적의 온도에 대한 연구)

  • Cho, Sung-Gi;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.12-16
    • /
    • 2019
  • For optimal injection molding, various molding conditions should be combined well. Therefore, engineers should be thoroughly familiar with mold design, fabrication, and injection molding. The choice of resin among the various molding conditions is closely related to the productivity of the molded part and the deformation after molding, so the engineer must select the appropriate resin. Engineers work on the basis of data provided by resin manufacturers during molding. However, in actual molding work, it is necessary to apply values slightly different from those provided to obtain molded articles of desired performance. In this study, various deformations of molded products were compared with respect to crystalline resin and amorphous resin when molded according to the data provided by the resin maker and molded at the changed values at the work site.

A Study on the Cup-Type Compression Molding for Continuous Fiber-Reinforced Poymeric Composites (연속섬유강화 플라스틱 복합재료의 컵형 압축성형성에 관한 연구)

  • 오영준;김형철;조선형;김이곤
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.176-181
    • /
    • 1997
  • During a compression molding of continuous fiber reinforced composites, the separation of matrix and fiber is caused by the flow of the molding process. As the characteristics of the products are greatly dependent on the separation, it is very important to clarify the separation in relation to molding condition, degree of needle punching number on the degree of nonhomogeneity are studied.

  • PDF

Simulation of Compression Molding Considering Slip at Interface for Polymeric Composite Sheet (섬유강화 고분자 복합판의 압축성형에 있어서 금형-재료계면의 미끄름을 고려한 유동해석)

  • 장수학;김석호;백남주;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.163-168
    • /
    • 1991
  • During Compression molding of polymeric composite materials, the flow characteristics should be obtained. Understanding the flow states may be useful for determination of optimum molding conditions, charge pattern etc. So far, for obtaining the flow analysis, no-slip boundary condition was applied on the mold surface. However, The study under consideration of the slip was conducted by Barone and Caulk. They have introduced the nondimensional parameter which is the ratio of viscous to friction resistance and governs the frictional condition. But the method for determining the parameter could not be proposed. In our work, the parameter which explains the interfacial friction is measured under a variety of molding conditions. Two-dimensional rectangular part and circular hollow disk are simulated with the measured parameter using the finite element method. Effects of the parameter on shapes of flow fronts are also presented.

A Study on Cooling Condition for Quality Improvement of Rotary Molding Machine (회전성형기의 품질 향상을 위한 냉각 조건에 관한 연구)

  • Kang, Jeong-Seok;Kim, In;Lee, Myungjae;Yoon, Jai-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.367-371
    • /
    • 2019
  • The molding for hollow products used widely in industry is rotational molding by heating and cooling. Uniform cooling is required to improve the quality of the product, and rapid cooling is required to improve the productivity. In this paper, the cooling condition is largely classified into the case of no forced cooling by the fan and forced cooling by the fan. In addition, when forced cooling by the fan is not performed, the condition for stopping the molding machine horizontally and the condition for stopping the molding machine vertically were classified. To confirm the forced cooling by the fan, the conditions were set such that only the molding machine rotates while the fan is not running and the upper and lower fans operate when only the lower fan is operated. The surface temperature of the rotary molding machine was analyzed by the STAR-CCM+ program for the case of air-cooling. The temperature distribution of the rotary molding machine was analyzed for five conditions and the temperature distribution for cooling was compared under each condition. Among the five cases, Case 4 was lowest at approximately 35 ℃ after 900sec.

Nano Molding Technology for Optical Storage Media with Large-area Nano-pattern (대면적 광 정보저장매체의 나노성형에 대한 기술 개발)

  • Shin Hong-Gue;Ban Jun-Ho;Cho Ki-Chul;Kim Heon-Yong;Kim Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.162-167
    • /
    • 2006
  • Hot embossing lithography(HEL) has the production advantage of comparatively few process step, simple operation, a relatively low cost for embossing tools(Si), and high replication accuracy for small features. In this paper, we considered the nano-molding characteristic according to molding parameters(temperature, pressure, times, etc) and induced a optimal molding condition using HEL. High precision nano-patter master with various shapes were designed and manufactured using the DRIE(Deep Reactive ion Etching), LPCVD(Low Pressure Chemical Vapor Deposition) and thermal oxidation process, and we investigated the molding characteristic of DVD and Blu-ray nickel stamp. We induced flow behaviors of polymer, rheology by shapes and sizes of the pattern through various molding experiments. Finally, with achieving nano-structure molding with high aspect ratio, we will secure a basic technology about the molding of large-area nano-pattern media.

A study on searching method of molding condition to control the thickness reduction of optical lens in plastic injection molding process (플라스틱 광학렌즈 사출성형에 있어서 수축 변형량 예측을 위한 사출성형 조건 탐색에 관한 연구)

  • 곽태수;오오모리히토시;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2004
  • In the injection molding of plastic optical lenses, the molding conditions have critical effects on the quality of the molded lenses. Since there are many molding parameters involved in injection molding process, determination of the molding conditions for lens molding is very important in order to precisely control the surface contours of an optical lens. Therefore this paper presents the application of neural network in suggesting the optimized molding conditions for improving the quality of molded parts based on data of FE Analysis carried out through CAE software, Timon-3D. Suggested model in this paper, which serves to learn from the data of FE Analysis and induce the values for optimized molding conditions. has been implemented for searching the molding conditions without void and with minimized thickness shrinkage at lens center of injection molding optical lens. As the result of this study. we have confirmed that void creation at the inside of lens is primarily determined by mold temperature and thickness shrinkage at center of lens is primarily determined by the parameters such as holding pressure and mold temperature.