• Title/Summary/Keyword: Mold injection

Search Result 1,020, Processing Time 0.024 seconds

A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding (사출성형공정에서 금형에 전달되는 진동 신호 측정을 이용한 성형 단계별 공정시간과 공정특성의 모니터링에 대한 연구)

  • Lee, Jun-han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • In this study, the vibration signal of the mold was measured and analyzed to monitoring the process time and characteristics during injection molding. A 5 inch light guide plate mold was used to injection molding and the vibration signal was measured by MPU6050 acceleration sensor module attached the surface of fixed mold base. Conditions except for injection speed and packing pressure were set to the same value and the change of the vibration signal of the mold according to injection speed and packing pressure was analyzed. As a result, the vibration signal had a large change at three points: "Injection start", "V/P switchover", and "Packing end". The time difference between "injection start" and "V/P switchover" means the injection time in the injection molding process, and the time difference between "V/P switchover" and "Packing end" means the packing time. When the injection time and packing time obtained from the vibration signal of the mold are compared with the time recorded in the injection molding machine, the error of the injection time was 2.19±0.69% and the error of the packing time was 1.39±0.83%, which was the same level as the actual value. Additionally, the amplitude at the time of "injection start" increased as the injection speed increased. In "V/P switchover", the amplitude tended to be proportional to the pressure difference between the maximum injection pressure and the packing pressure and the amplitude at the "packing end" tended to the pressure difference between the packing pressure and the back pressure. Therefore, based on the result of this study, the injection time and packing time of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process variables such as the injection speed, maximum injection pressure, and packing pressure can be evaluated as the change of the mold vibration during injection molding.

Research on Gas Injection Mold using CAE Analysis of Steering wheel Parts (자동차핸들 제품의 CAE해석을 활용한 가스 사출성형에 관한연구)

  • Kang, Sae-Ho;Woo, Chang-Ki;Kim, Ok-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7729-7735
    • /
    • 2015
  • As plastic injection mold parts is suitable system mass production making mold. So thick steering wheel parts is desirable to carry out gas injection molding. Gas injection mold is skill to inject nitrogen gas postfilling melting raw material into mold. Gas injection mold have many advantage like retrenchment of material cost, upgrading the guality. etc. It was decided gate position to minimize warpage of parts analysis injection mold process using mold flow software and incase doing gas injection mold using normal p.p material. it occur big warpage. so it is object minimizing warpage of injection parts to change p.p material containing mineral 18% and removing fingering phenomenon trouble as changing gate position. Also in case carrying out gas injection mold, I did comparison and analysis to grasp shape flow in gas setting a standard gate after flowing in raw material. Through this study, I found out changing of thickness by parts shape and it can occur warpage of parts by plastic material even though it carry out gas injection mold and it had a direct influence on trouble of parts by gate position.

Introduction to Plastic Injection Molds (사출성형용 금형의 기능 및 구조에 대한 고찰)

  • 허영무
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.641-650
    • /
    • 2002
  • For the production of complicated plastic parts in a cycle, a mold is needed.. The basic tasks of a mold are accommodation and distribution of the resin, shaping and cooling the melt and ejection of the molding. To achieve these goal a mold has several important parts and we classified types of molds. The 6 different major functions of a mold are explained and several types of molds are shown in her. I hope these explanation will help to understand injection molds for a design engineer.

A multi-field CAE analysis for die turning injection application of reservoir fluid tank (리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

Manufacturing and Molding Technology of $500{\mu}m$ 8Cavity Injection Molding System (500um급 8캐비티 사출금형설계 제작 및 성형기술)

  • Lee, S.H.;Cho, K.H.;Lee, J.W.;Ko, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.444-447
    • /
    • 2008
  • Recently, the need of thin-walled injection molding and enhancement of its productivity is greatly increased. In this study, we designed and manufactured a injection molding system, which can mold a part with the thickness of $500{\mu}m$ and 8 cavity. And processing technique for the multi-cavity injection molding system, which is capable of mass productivity on the plastic parts, was considered. The problems of unbalance/imbalance on the molding process for the multi-cavity mold were predicted by numerical analysis using plastic injection molding commercial code. In addition, controllable system of melt front filling was introduced for a balanced filling using the mold temperature sensor on injection mold. It was shown that balanced filling with the suggested injection molding system was possible for $500{\mu}m$ plastic parts with 8 cavity layout.

  • PDF

Design of Injection Molding Process Factors Blower Fan using the Taguchi Method (다구찌법을 이용한 송풍팬 사출공정인자 설계)

  • Kim, Kyeong-Hwan;Choi, Jong-Yeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.92-97
    • /
    • 2012
  • Injection mold is a manufacturing process used to produce parts of complicated shape at a low cost. Many factors affect the quality of injection molded part during injection molding process. A study on the optimization of injection mold is progressed by using a simulation software like Moldflow. Filling, packing and cooling phases of injection molding processes are analyzed according to the mold design considering the shrinkage of molded part, the degree of filling rate and the wearing of a mold. Taguchi method is applied to analyze the significance of processing parameter and the dynamic characteristics according to the variation of processing parameters. From the results, the mold temperature and packing pressure influenced the shrinkage of injection molded part.

A Study on Injection Molding process for Manufacturing about Blower-fan (블로우팬의 사출성형공정에 관한 연구)

  • 김병곤;민병현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.316-319
    • /
    • 2002
  • Injection mold is a manufacturing process used to produce parts of complicated shape at a low cost. Many factors affect the quality of injection molded part during injection molding process. A study on the optimization of injection mold is progressed by using a simulation software like Moldflow. Filling, packing and cooling phases of injection molding processes are analyzed according to the mold design considering the shrinkage of molded part, the degree of filling rate and the wearing of a mold. Taguchi method is applied to analyze the significance of processing parameters and the dynamic characteristics according to the variation of processing parameters. From the results, the mold temperature and packing pressure influenced strongly the shrinkage of injection molded part.

  • PDF

The Effects of Discharge Condition on Mechanical properties of Injection Moldings (사출 조건이 사출품의 기계적 성질에 미치는 영향)

  • 최양호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.84-91
    • /
    • 1997
  • In producing moldings by using an injection mold, several variables such as the metal mold and the condition of injection molding should be selected properly in order to obtain good quality of moldings. In this study, focussed are the mechanical properties of injection moldings, since many researches on injection have been focussed mainly on the molding quality, injection pressure, and bulk temperature but the properties of injection moldings have not been studied extensively. The mechanical properties of present injection moldings can be improved simply by changing the molding material and the injection conditon without changind the metal mold. To have the final products meet the specified molding quality and mechanical properties at the same time, the bulk temperature of injection, pressure variation, volumetric shrinkage, stress, and cooling should be analized by CAE(computer aided engineering) after injection mold design. In this paper, the effects of dischare condition on mechanical properties of injection moldings are studied by testing the moldings which are injected by varying injection conditions.

  • PDF

Experimental study on injection molding parts weight according to foam molding process (발포 성형 공정에 따른 사출 성형품 무게에 관한 실험적 연구)

  • Jung, Hyun-Suk;Hong, Cheong-Min;Lee, Ha-Seong;Kim, Sun-Yong
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.24-28
    • /
    • 2015
  • Speaking in general terms the form injection process can be described as a new process-variant of already known structural foam molding technology which roots go back to the early sixties. The most limiting factors of already know foaming processes are large cell size and the lack of uniformity of these cells as well and the inability to foam all kinds of plastic materials. In this paper, Process Study on weight change in injection rate during foaming. Experimental conditions were set as the injection speed 50,150,300 and 450 mm/s. The experiments PA, PA+GF, PP, was confirmed that the weight increase to PP+TA.

  • PDF

An analysis on the injection mold simulation of single cushion pact cosmetic container for the friendly-environment and high productivity (친환경 고생산성을 위한 단일 쿠션 팩트 내 화장품 용기의 사출 시뮬레이션 분석)

  • Jung, Sung-Taek;Kim, Seong-Hyun;Kim, Hyun-Jeong;Lee, Joong-Bae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.51-56
    • /
    • 2018
  • Generally, The women was used in the cosmetic cushion fact. It has developed with the consideration of manufacturing. In this study, we designed green-friendly and element parts lower and single cushion fact containers using a single material. Injection mold simulation were performed using on 3D design data. The injection mold simulation used the data (Injection time / Cooling time / Temperature / Pressure) in the injection mold parameters. In addition, the sink mark phenomenon in the simulation results is analyzed as a problem due to the thickness and further research is needed in the future.