• 제목/요약/키워드: Mold Wall Temperature

검색결과 64건 처리시간 0.023초

Fabrication of Field-Emitter Arrays using the Mold Method for FED Applications

  • Cho, Kyung-Jea;Ryu, Jeong-Tak;Kim, Yeon-Bo;Lee, Sang-Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.4-8
    • /
    • 2002
  • The typical mold method for FED (field emission display) fabrication is used to form a gate electrode, a gate oxide layer, and emitter tip after fabrication of a mold shape using wet-etching of Si substrate. However, in this study, new mold method using a side wall space structure was developed to make sharp emitter tips with the gate electrode. In new method, gate oxide layer and gate electrode layer were deposited on a Si wafer by LPCVD (low pressure chemical vapor deposition), and then BPSG (Boro phosphor silicate glass) thin film was deposited. After then, the BPSG thin film was flowed into the mold at high temperature in order to form a sharp mold structure. TiN was deposited as an emitter tip on it. The unfinished device was bonded to a glass substrate by anodic bonding techniques. The Si wafer was etched from backside by KOH-deionized water solution. Finally, the sharp field emitter array with gate electrode on the glass substrate was formed.

인젝션 몰딩 기술을 이용한 마이크로 구조물 성형 (Micro Structure Fabrication Using Injection Molding Method)

  • 제태진;신보성;정석원;조진우;박순섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.253-259
    • /
    • 2002
  • Micro cell structures with high aspect ratio were fabricated by injection molding method. The mold inserts had dimension $1.9cm\times8.3cm$ composed of a lot of micro posts and were fabricated by LIGA process. The size of the micro posts was $157{\mu}m\times157{\mu}m\times500{\mu}m$ and the gaps between two adjacent posts were $50{\mu}m$. Using Polymethylmethacrylate (PMMA) injection molding was performed. The key experimental variables were temperature, pressure, and time. By controlling these, good shaped mim cell structures with $50{\mu}m$ in wall thickness and $500{\mu}m$ in depth were obtained. In order to understand micro molding mechanism, shape changes of molded PMMA were studied with experimental variables. And the durability of mold insert was investigated, too. The results show that the most important factor in molding processes was the mold temperature that is closely related to the filling of the melt into the micro cavity. And the holding time before cooling showed a great effect on the quality of molded PMMA.

  • PDF

Influence of Mold Temperature, Lubricant and its Additional Quantity on Compressibility in Warm Compaction

  • Ushirozako, Tsutomu;Yamamoto, Masayuki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.195-196
    • /
    • 2006
  • In recent years, demands for sintered ferrous material with higher strength are increasing. To satisfy these demands, studies and commercial use of the die wall lubrication method, the warm compaction method and the combination of both methods are widely carried out to achieve high density. The die wall lubrication warm compaction method makes it possible to achieve high density by reducing internal lubricant through die wall lubrication, although the method involves several issues such as prolonged cycle time due to lubricant spraying and difficulty in spraying lubricant in the case of compacting with complicated geometry. Meanwhile, the conventional warm compaction method requiring no die wall lubricant application cannot achieve such a high density as in the case of die wall lubrication warm compaction due to higher volume of internal lubricant. However, this report discloses our study result in which the possibility of improving density is exhibited by using a lubricant type with superior dynamic ejection property that can reduce volume of lubricant additive.

  • PDF

Digital Infrared Thermal Imaging of Crape Myrtle Leaves Infested with Sooty Mold

  • Kim, Jiyeon;Kweon, Si-Gyun;Park, Junhyung;Lee, Harim;Kim, Ki Woo
    • The Plant Pathology Journal
    • /
    • 제32권6호
    • /
    • pp.563-569
    • /
    • 2016
  • The spatial patterns for temperature distribution on crape myrtle leaves infested with sooty mold were investigated using a digital infrared thermal imaging camera. The mean temperatures of the control and sooty regions were $26.98^{\circ}C$ and $28.44^{\circ}C$, respectively. In the thermal images, the sooty regions appeared as distinct spots, indicating that the temperatures in these areas were higher than those in the control regions on the same leaves. This suggests that the sooty regions became warmer than their control regions on the adaxial leaf surface. Neither epidermal penetration nor cell wall dissolution by the fungus was observed on the adaxial leaf surface. It is likely that the high temperature of black leaves have an increased cooling load. To our knowledge, this is the first report on elevated temperatures in sooty regions, and the results show spatial heterogeneity in temperature distribution across the leaf surface.

보스 벽 두께가 사출성형의 싱크마크 발생에 미치는 영향 (Effect of Boss Wall Thickness on Sink Mark in Injection Molding)

  • 김현필;김용조
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.103-109
    • /
    • 2008
  • The sink mark on boss parts is generated by the volumetric shrinkage that is caused by both the molding thickness and the boss wall thickness. The volumetric shrinkage is caused by packing pressure and its amount tends to decrease by increasing the packing pressure. The packing pressure can therefore increase the flow rate to a boss part and causes the depth of sink mark to increase. As the molding thickness and the boss wall thickness in the boss part can increase the part volume, these may yield bad solidifying and also extend the molding cycle. In this paper, both the injection molding test and the flow analysis were carried out to investigate the effect of sink mark that was generated in the boss wall thickness of injection molded products. The sink mark could also be caused by thickness ratio of boss part. For a given thickness ratio of boss, several molding process parameters such as packing pressure, packing time and melt temperature, affecting to generation of the sink mark were discussed

  • PDF

DVD-RAM 기판의 복굴절, Radial-tilt 및 전사성 향상을 위한 사출압축성형공정 최적화 (An Optimum Design of Replication Process to Improve Birefringence, Radial-tilt and Land-Groove Structure in DVD-RAM Substrates)

  • 이남석;성기병;강신일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.438-444
    • /
    • 2001
  • The objective of this study is to provide a simple methodology to find optimum processing conditions to fabricate sub-micron structured DVD-RAM substrates with superb optical and geometrical properties. It was found that the birefringence, which is regarded as one of the most important optical properties for an optical disk, was very sensitive to the mold wall temperature history. Also, the integrity of the replication, represented by the land-groove structure and the radial tilt were influenced by the mold temperature and the compression pressure. A set of optimum conditions were obtained by applying Design of Experiment and the objective functions composed of three different objectives.

  • PDF

미세 구조물의 충전에 관한 실험 및 수치해석 (Experimental & Numerical Result of the filling of Micro Structures in Injection Molding)

  • 이재구;이봉기;권태헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

사출/압축 성형 Center-gated 터스크에서의 잔류 응력과 복굴절의 수치 해석 (II) - 공정조건의 영향 - (Numerical Analysis of Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (II) - Effects of Processing Conditions -)

  • 이영복;권태헌;윤경환
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2355-2363
    • /
    • 2002
  • The accompanying paper, Part 1, has presented the physical modeling and basic numerical analysis results of both the flow-induced and thermally-induced residual stress and birefringence in injection molded center gated disks. The present paper, Part II, has attempted to investigate the effects of various processing conditions of injection/compression molding process on the residual stress and birefringence. The birefringence is significantly affected by injection melt temperature, packing pressure and packing time. Birefringence in the shell layer increases as melt temperature gets lower. The inner peak of birefringence increases with packing time and packing pressure. On the other hand, packing pressure, packing time and mold wall temperature affect the thermally-induced residual stress rather significantly in the shell layer, but insignificantly in the core region. Injection/compression molding has been found to reduce the birefringence in comparison with the conventional injection molding process. In particular, mold closing velocity and initial opening thickness in the compression stage of injection/compression molding process have significant effect on the flow-induced birefringence, but not on tile thermal residual stress and the thermally induced birefringence.

Center-gated 디스크에 대한 사출/압축 성형공정의 수치적 모델링-압축성을 고려한 점탄성유체 모델의 사출성형- (Numerical Modeling of Injection/Compression Molding for Center-gated Center-gated Disk (Part I))

  • 김일환;박성진;정성택;권태현
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.289-301
    • /
    • 1998
  • The present study attempted to numerically simulate the process in detail by developing an appropriate physical modeling and the corresponding numerical analysis for precision injection and injection/compression molding process of center-gated disk. In part I, a physical modeling and associated numerical analysis of injection molding with a compressible viscoelastic fluid model are presented. In the distribution of birefringence, the packing procedure results in the inner peaks in addition to the outer peaks near the mold surface, and values of the inner peaks increase with the packing time. Also, values of the density in the core region increase with the packing time. From the numerical results, we also found that birefringence becomes smaller as the melt temperature gets higher and that it is insignificantly affected by the flow rate and the mold temperature. As far as the density distribution is concerned, mold temperature affected the distribution of density especially near the wall. But it was not significantly affected by flow rate and melt temperature. Numerical results of birefringence coincided with experimental data qualitatively but didn't quantitatively.

유리 금형용 다공질 소결재의 제조에 관한 연구 (A Study on the Fabrication of Porous Sintered Materials for Glass Mold)

  • 장태석;임태환
    • 한국산학기술학회논문지
    • /
    • 제6권6호
    • /
    • pp.468-472
    • /
    • 2005
  • 유리병의 제조에 있어서 유리 융체가 금형 벽면에 부착하는 것을 방지하기 위하여 성형할 때마다 금형 내벽면을 윤활제로 도포하는 공정이 있다. 금형 벽면을 통기성이 있는 다공질 소결체로 제조하면 도포공정을 생략할 수 있다. 따라서 본 연구에서는 스테인리스 중에서 내열${\cdot}$내마모 특성이 가장 우수한 310L계 조대 분말($-150{\mu}m$) 및 420J2 계 미세 분말($40{\~}50{\mu}m$)을 사용, 유리 금형용 내벽면 재로서 가장 적합한 다공질 소결체(소결체의 밀도: $85{\~}90\%$)를 제작하기 위하여 성형압력, 소결 분위기, 소결온도 및 시간을 변화시켜 다음과 같은 결과를 얻었다. (1) 고상 소결로서는 입자 크기가 큰 310L분말을 가지고는 어느 경우에 있어서나, 목적하는 소결 밀도를 얻을 수 없었다. (2) $2ton/cm^2$의 성형압력으로 성형한 실형상 성형체를 양산용 진공($1300^{\circ}C$, 2시간) 소결로에서 소결한 결과, 소결체의 밀도는 $310L+0.03\%B$, 420J2, 420J2+(0.03, 0.06)$\%$B에서 각각 6.2(79$\%$), 6.6(86$\%$), 7.3(95$\%$), $7.6(99\%)g/cm^3$로 나타났다. 따라서, 420J2계 분말(저압성형) 및 310L+0.03$\%$B(고압성형)분말을 사용하여 진공 중 소결하면 목적하는 통기도를 가진 소결체를 제작할 수 있다는 것을 알았다.

  • PDF