• Title/Summary/Keyword: Mold Analysis

Search Result 1,206, Processing Time 0.025 seconds

A Study on the Quality Characteristics of Jeolpyun with Bamboo Leaf Powder (절편제조 시 첨가한 대잎 분말이 절편의 품질특성에 미치는 영향 연구)

  • Lee, Gyu-Hee;Kim, Mi-Kyung
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.6
    • /
    • pp.770-778
    • /
    • 2010
  • Bamboo leaf powder was added to Jeolpyun to increase the neutraceutical effects and storage period. The bamboo leaf powder was added to rice flour at ratios of 0, 4, 6, 8, and 10% (w/w), and they were treated with aqueous malt extract to extend storage. The Jeolpyun was stored at $20^{\circ}C$ for 72 hr, and the physical and sensory characteristics were evaluated. As a result, the crude fat, crude protein, moisture, crude ash and total dietary fiber contents in bamboo leaf powder were 4.36, 11.29, 3.37, 7.33, and 65.57%, respectively. The Hunters L, a, and b values decreased significantly as the amount of bamboo leaf powder increased; however, the a and b values increased during storage. The paste property setback values decreased with the malt extract treatment and with increasing amounts of bamboo leaf powder. In a sensory analysis, hard texture strength in the malt extract and bamboo leaf powder treatment groups was less than that in the control during storage. The Jeolpyun prepared with malt extract and no bamboo leaf powder was the most accepted by consumers. Although adding bamboo leaf powder resulted in less consumer acceptance except for the flavor attribute, adding 4% and 8% bamboo leaf powder resulted in better consumer acceptance for texture, taste, and overall acceptance than that of the control. In a microbial analysis, adding bamboo leaf powder resulted in fewer mold colonies. In conclusion, adding 4% bamboo leaf powder and malt extract to Jeolpyun improved its storage properties.

A study on thermal fluid analysis in X-ray tube for non-fire alarm (비화재보를 위한 X-ray tube 내 열 유동해석에 관한 연구)

  • Yun, Dong-Min;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.33-38
    • /
    • 2022
  • Currently, Korea is an aging society, and it is expected to enter a super-aging society in about 4 years. Accordingly, many X-ray technologies are being developed. In X-rays, 99% of X-rays are converted into heat energy and 1% into light energy (X-rays). 99% of the thermal energy raises the temperature of the anode and its surroundings, and the cooling system is an important factor as overheating can affect the deterioration of X-ray quality and shortened lifespan. There is a method of forced air cooling using natural convection. Therefore, in this study, when X-rays were taken 5 times, Flow analysis was performed on heat removal according to temperature rise and cooling time for the heat generated at the anode of the X-ray tube (input power 60kW, 75kW, 90kW). Based on one-shot, the most rapid temperature rise section increased by more than 57% to 0.03 seconds, A constant temperature rises from 0.03 seconds to 0.1 seconds, It is judged that the temperature rises by about 8.2% or more at one time. After one-shot cooling, the cooling drops sharply from about 60% to 0.03 seconds, It is judged that the temperature has cooled by more than 86% compared to the temperature before shooting. One-shot is cooled by more than 86% with cooling time after 0.1 seconds, As the input power of the anode increases, the cooling temperature gradually increases. Since the tungsten of the anode target inside the X-ray tube may be damaged by thermal shock caused by a rapid temperature rise, an improvement method for removing thermal energy is required when using a high-input power supply.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Analysis of Flavor Pattern from Different Categories of Cheeses using Electronic Nose (전자코를 이용한 다양한 유형의 치즈 제품 풍미성분 분석)

  • Hong, Eun-Jung;Kim, Ki-Hwa;Park, In-Seon;Park, Seung-Yong;Kim, Sang-Gee;Yang, Hae-Dong;Noh, Bong-Soo
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.669-677
    • /
    • 2012
  • The objective of this study was to analyze the flavor pattern of different varieties of cheeses. Four of the each following cheese varieties such as shred type pizza cheese, Cheddar cheese, Mozzarella block cheese, and white mold-ripened cheeses, stored at $4^{\circ}C$ during 2 wks were examined before and after cooking at $70^{\circ}C$ and $160^{\circ}C$. Flavor patterns of these cheeses were analyzed using an electronic nose system based on mass spectrometer. All data were treated by multivariate data processing based on discriminant function analysis (DFA). The results showed the discriminant model by DFA method. Data revealed that flavor patterns of pizza cheeses were well separated as storage prolonged and obviously discriminated as the higher the cooking temperature. The result of pattern recognition analysis based on discriminant function analysis showed that new brand of pizza cheese produced by Imsil Cheese Cooperative was located at middle between the flavors of the imported brands of pizza cheese and those of domestic brand of pizza cheeses. Imsil cheese has a unique flavor pattern among other variety of cheeses. Application of pattern recognition analysis by electronic nose might be useful and advanced technology for characterizing in flavor pattern of cheese products from different origins and different categories of cheeses.

Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis (유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.499-508
    • /
    • 2016
  • Injection molding is a method for manufacturing many products, wherein a plasticized resin is injected into a mold at high pressure and hardened. According to the method, the product can be manufactured into various forms, and the mass production of up to tens of thousands of products is possible. The purpose of this study was to determine the process conditions for manufacturing a door latch for automobiles, through an analysis of the injection molding method. To calculate an appropriate injection flow for injection molding, a primary analysis for comparing the injection time, pressure, flow pattern, consolidation range, shear stress, shear rate, and weld line, as well as a secondary analysis for determining the conditions for stabilizing the molding temperature, holding pressure, and cooling process, were conducted. The characteristics of injection molding, and their influence on the product quality are discussed. No weld line and pores were observed on the products that had been manufactured based on the process conditions determined above. In addition, there were no flaws regarding the deformation compared to the prototype. Therefore, the manufacture of a product under the conditions determined in this study can reduce the defect rate compared to the existing production, and the process is also more competitive due to reduced production time.

Effects of Temperature on the Development and Reproduction of Four Species of Aphids (Hemiptera: Aphididae) Damaging Cereal Crops (식량작물에 피해를 주는 진딧물 4종의 발육과 번식에 미치는 온도의 영향)

  • Ahn, Jeong Joon;Choi, Kyung San;Seo, Bo Yoon;Jung, Jin Kyo
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.339-355
    • /
    • 2021
  • Aphids can damage plants directly by absorbing their phloem sap and indirectly by transferring plant viruses and causing sooty mold. We compared the thermal effect on the development, survivorship, and reproduction of four cereal crop-damaging aphid species, Rhopalosiphum padi, Aulacorthum solani, Aphis craccivora, and Acyrthosiphon pisum using a life table analysis method. We investigated the stage-specific development period, survivorship, adult longevity, and fecundity of the above mentioned four aphids at 10, 15, 20, 25, and 30℃, respectively, and analyzed their life table parameters using the age-stage, two-sex life table analysis. A. solani nymphs could not complete their development to adulthood at 30℃. The intrinsic increase rate of R. padi was the highest at all tested temperatures except for that at 15℃ (0.12, 0.34, 0.47, and 0.32 at 10, 20, 25, and 30℃, respectively), and that of A. pisum displayed negative values at 30℃ (-0.04). It is speculated that R. padi would be a dominant species under high temperature conditions and A. solani is a highly adaptive species at low temperatures through the comparative analysis of the life table parameters of four aphid species damaging to cereal crops.

Analysis on Relation between Rehabilitation Training Movement and Muscle Activation using Weighted Association Rule Discovery (가중연관규칙 탐사를 이용한 재활훈련운동과 근육 활성의 연관성 분석)

  • Lee, Ah-Reum;Piao, Youn-Jun;Kwon, Tae-Kyu;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.7-17
    • /
    • 2009
  • The precise analysis of exercise data for designing an effective rehabilitation system is very important as a feedback for planing the next exercising step. Many subjective and reliable research outcomes that were obtained by analysis and evaluation for the human motor ability by various methods of biomechanical experiments have been introduced. Most of them include quantitative analysis based on basic statistical methods, which are not practical enough for application to real clinical problems. In this situation, data mining technology can be a promising approach for clinical decision support system by discovering meaningful hidden rules and patterns from large volume of data obtained from the problem domain. In this research, in order to find relational rules between posture training type and muscle activation pattern, we investigated an application of the WAR(Weishted Association Rule) to the biomechanical data obtained mainly for evaluation of postural control ability. The discovered rules can be used as a quantitative prior knowledge for expert's decision making for rehabilitation plan. The discovered rules can be used as a more qualitative and useful priori knowledge for the rehabilitation and clinical expert's decision-making, and as a index for planning an optimal rehabilitation exercise model for a patient.

Numerical Approach to Optimize Piercing Punch and Die Shape in Hub Clutch Product (허브클러치 제품의 피어싱 펀치 및 금형 형상 최적화를 위한 수치접근법)

  • Gu, Bon-Joon;Hong, Seok-Moo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.517-524
    • /
    • 2019
  • The overdrive hub clutch is attached to a 6-speed automatic transmission to reduce fuel consumption by using the additional power of the engine. This paper proposes a means to minimize the load and roll-over ratio on the punch during the piercing process for the overdrive hub clutch product. Die clearance, shear angle, and friction coefficient, which can affect the load and roll-over ratio of the punch during processing, were set as the design variables. Sensitivity analysis was also conducted to determine the influence of each design variable on the punch load and roll-over ratio. As a result, shear angle, friction coefficient and die clearance were found to be sensitive to load and roll-over ratio. The punch load and roll-over ratio were set as the objective function and the equation of each design variable and objective function was derives using the Response Surface Method. Finally, the optimal value of the design variables was derived using the Response Surface Method. Application of this model to finite element analysis resulted in 22.14% improvement in the roll-over ratio of the punch load and material.

Assessment of Rock Mass Strength Using Three-Dimensional Numerical Analysis with the Distinct Element Method (개별요소법 기반의 삼차원 수치해석을 통한 절리성 암반의 강도특성 평가)

  • Junbong Bae;Jeong-Gi Um;Hoyoung Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.573-586
    • /
    • 2023
  • Joints or weak planes can induce anisotropy in the strength and deformability of fractured rock masses. Comprehending this anisotropic behavior is crucial to engineering geology. This study used plaster as a friction material to mold specimens with a single joint. The strength and deformability of the specimens were measured in true triaxial compression tests. The measured results were compared with three-dimensional numerical analysis based on the distinct element method, conducted under identical conditions, to assess the reliability of the modeled values. The numerical results highlight that the principal stress conditions in the field, in conjunction with joint orientations, are crucial factors to the study of the strength and deformability of fractured rock masses. The strength of a transversely isotropic rock mass derived numerically considering changes in the dip angle of the joint notably increases as the intermediate principal stress increases. This increment varies depending on the dip of the joint. Moreover, the interplay between the dip direction of the joint and the two horizontal principal stress directions dictates the strength of the transversely isotropic rock mass. For a rock mass with two joint sets, the set with the steeper dip angle governs the overall strength. If a rock bridge effect occurs owing to the limited continuity of one of the joint sets, the orientation of the set with longer continuity dominates the strength of the entire rock mass. Although conventional three-dimensional failure criteria for fractured rock masses have limited applicability in the field, supplementing them with numerical analysis proves highly beneficial.

Selection of Microorganisms and Optimization of Manufacture Process for Cheonggukjang (고품질의 청국장 생산 발효균주 선별 및 최적화)

  • Hwang, Hyun-Ae;Lee, Nam-Kuen;Cho, Il-Jae;Hahm, Young-Tae;Kwon, Ki-Ok;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.406-411
    • /
    • 2008
  • This study was conducted to examine the quality enhancement of fermented soybean pastes (cheonggukjang) using microorganisms with high enzyme activities and proper experimental design. The microorganisms for soybean paste fermentation were selected from a specific area of Gyeonggi and were idenlified by 16S rDNA sequence analysis. To prepare the cheonggukjang, an optimum mixing ratio of selected microorganisms was determined using contour plots and numerical optimization methods. A total of 39 microorganisms were isolated from the soybean paste, consisting primarily of Bacillus subtilis and Bacillus licheniformis, and no mold was found. Three microorganisms showing high enzyme activities were selected and used to formulate an optimum mixing ratio for cheonggukjang preparation. Based on levels of amino-nitrogen, ammonium-nitrogen, antioxidant activity values, and sensory preference results, the optimum mixing ratio of 50% of Bacillus sp. SC-1 and 50% SC-3 was suggested for the manufacture of high quality of cheonggukjang.