• Title/Summary/Keyword: Mold Analysis

Search Result 1,206, Processing Time 0.033 seconds

Analysis of the Effect of Micro-groove Patterns on Osseointegration using Pulsed Laser Processing (펄스 레이저 가공에 의한 마이크로 그루브 패턴이 골 세포 유착에 미치는 영향 분석)

  • Seok-Jae Ha;Si-Myung Sung;Hye-Jin Kim
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.30-36
    • /
    • 2024
  • As the demand for biomaterials and medical devices increases due to advancements in medical technology and the rising average lifespan of the population, the importance of surface treatment technology for biometallic materials used in orthopedic implants is highlighted. Achieving stable mechanical attachment between the implant and human bone, specifically bone cell adhesion, is crucial. Without proper adhesion, issues such as inflammation and reduced load-bearing capacity can occur, leading to the need for implant reimplantation. Therefore, this paper focuses on creating a micro-groove pattern using a pulsed nanosecond laser on the surface of a titanium alloy (Ti6Al4V), a biometallic material, to promote cell adhesion. To evaluate the effectiveness of the pattern in enhancing cell adhesion, MG-63 osteoblasts were cultured on the micro-groove patterned surface, and their adhesion and morphological changes were analyzed. This study confirms the potential of laser processing as a surface treatment method for biometallic materials.

Quality Characteristics of Korean Wheat Bread Prepared with Substitutions of Naturally Fermented Rice Starters (쌀 천연 발효액종을 첨가한 우리밀 식빵의 품질특성)

  • Choi, Sang-Ho;Lee, Seung-Joo
    • Culinary science and hospitality research
    • /
    • v.20 no.2
    • /
    • pp.100-119
    • /
    • 2014
  • In this study, rice was used with naturally fermented extract to compare and analyze the physico-chemical characteristics and investigated how to make pan bread made with domestic wheat flour added with naturally fermented rice extract. Also, it examined quality characteristics of pan breads prepared with 0, 10, 30, 50, 70% naturally fermented rice starters. As the fermentation time of rice starters increased, pH of bread doughs decreased. On farinograph, water absorption, development time and stability of rice starters samples were lower than the control. RVA(Rapid Visco Analyzer) analysis showed that wheat flour retrogradation was retarded by increasing rice starters content. The weights of pan breads containing rice starters were higher than that of control. The moisture content of pan breads containing rice starters decreased as storage time increased. In analyzing of visible mold colony during 7 days of storage at $28^{\circ}C$, pan breads containing rice starters was retarded mold growth. In the texture analyzer measurement, hardness of breads containing rice starters significantly increased as storage time increased, which was higher than that of control. The result of sensory properties was no significant difference between the group containing 50% naturally fermented rice starters and control group, such as appearance, flavor, taste and overall quality.

Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea

  • Kandasamy, Sujatha;Park, Won Seo;Yoo, Jayeon;Yun, Jeonghee;Kang, Han Byul;Seol, Kuk-Hwan;Oh, Mi-Hwa;Ham, Jun Sang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1002-1011
    • /
    • 2020
  • Objective: This study was conducted to determine the composition and diversity of the fungal flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. Methods: Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically distinct isolates were identified using sequencing of internal transcribed spacer region. Results: The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per hazard analysis critical control point regulation. A total of 986 fungal isolates identified and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant. The cheese ripening rooms was overrepresented in 9 farms by Penicillium (76%), while Aspergillus in a single farm. Among 39 species, the prominent members were Penicillium commune, P. oxalicum, P. echinulatum, and Aspergillus versicolor. Most of the mold species detected on surfaces were the same found in the indoor air of cheese ripening rooms. Conclusion: The environment of cheese ripening rooms persuades a favourable niche for mold growth. The fungal diversity in the dairy farms were greatly influenced by several factors (exterior atmosphere, working personnel etc.,) and their proportion varied from one to another. Proper management of hygienic and production practices and air filtration system would be effective to eradicate contamination in cheese processing industries.

Analysis of Pathogenic Microorganism's Contamination on Organic Leafy Vegetables at Greenhouse in Korea (유기농 시설엽채류의 유해미생물 오염평가)

  • Oh, Soh-Young;Nam, Ki-Woong;Yoon, Deok-Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • This study was conducted to evaluate the microbiological safety of leafy vegetables (perilla leaf and lettuce) in relation to cultivation methods. A total of 2,304 samples were collected from plants, harvesting tools and soil mulching film during the production and harvest stages from organic- and conventional- farms. From the samples, sanitary indicator microorganisms (total aerobic bacteria, coliforms, E. coli., Environmental Listeria, and yeast and mold) and pathogenic microorganisms (S. aureus, B. cereus, Salmonella spp., Clostridium spp., and L. monocytogenes) were analyzed. In the production stage of leafy vegetables, the sanitary indicator microorganisms was not detected regardless of cultivation method or it was detected to be less than $3.4\;Log\;CFU/100cm^2$. B. cereus and S. aureus were found to be 0.22~1.55 Log CFU/g in perilla leaf and lettuce produced by organic farms, and S. aureus was not detected and B. cereus was found to be 0.42~2.19 Log CFU/g in conventional farms. There were no significant differences between two cultivation methods. In the harvesting tools and soil mulching film, the contamination levels of sanitary indicator microorganisms and pathogenic microorganisms was low regardless of the cultivation method. However, there was a positive correlation ($R^2=0.4526$) in that the higher the microbial contamination level in the harvesting tool, the higher the microbial contamination on the surface of the plant. In addition, sanitary indicator microorganisms and pathogenic microorganisms were not detected or low in soil mulching during the production of organic leafy vegetables. As a result of this study, microbial hygiene control by soil mulching and harvesting tools was more important than difference of cultivation method in production of leafy vegetables.

A STUDY ON THE MICROSTRUCTURES OF THE AMALGAM ALLOYS AND AMALGAMS (치과용 아말감합금 및 아말감의 마세구조에 관한 연구)

  • Yeon, Sang-Heum;Lee, Chung-Sik;Lee, Myung-Jong;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.87-105
    • /
    • 1996
  • The purpose of this study is to investigate the characteristics of the compositions and phases of amalgam alloys and amalgams by using EMPA and X-ray diffractometer. Each specimen was made from Caulk Fine Cut Clow copper lathe cut amalgam), Caulk Spherical (low copper spherical amalgam), Tytin (high copper unicorn position amalgam), Dispersally (high copper admixed amalgam) and Valiant (Palladium enriched amalgam). For preparing amalgam alloys, Tytin and Valiant were used as powder forms and the others were used as tablet forms after being polished with polishing machine. For preparing amalgams, each amalgam alloy and Hg were measured, and triturated by mechanical amalgamater according to user's instructions. After triturating, the triturated mass was inserted to cylindrical metal mold and simultaneously adapted by cylindrical condenser with same diameter and condensed by Instron universal testing machine with 80kg pressure & 1mm/min speed. Each specimen was removed from the metal mold and stored at room temperature for a week. The specimen was polished with the same polishing machine for amalgam alloy. For observation of microstructure and analysis of composition of amalgam alloys and amalgams, EMPA was used to get secondary electron images, backscattered images and characteristic X-ray images of Ag, Sn, Cu, Zn, Hg. To analyze compositions of amalgam alloys and amalgams, X-ray diffractometer was used. Amalgam alloys were scanned at the range of 2${\theta}$ of 30-$85^{\circ}$ and the speed of $4^{\circ}$/min with Cuka line and amalgams were scanned at the range of 2${\theta}$ of 28-$44^{\circ}$ and the speed of $4^{\circ}$/min with Cuka line. By comparing obtained d(distance between surfaces) and d of expected phases and atoms in amalgam alloys and amalgams in ASTM card, phases and atoms were identified. The results were as follows, 1. In Caulk Fine Cut amalgam alloy typical ${\gamma}$ phase was shown, and in amalgam, ${\gamma}$, ${\gamma}_1$ and ${\gamma}_2$ phases were observed. 2. In Caulk Spherical amalgam alloy ${\gamma}$, Ag, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, ${\gamma}_2$ and $\eta$ phases were observed. 3. In Tytin amalgam alloy ${\gamma}$, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed. 4. In Dispersalloy ${\gamma}$, Ag, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed. 5. In Valiant alloy ${\gamma}$, Cu and e phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed.

  • PDF

Development of a cavity pressure measuring device and estimation of viscosity functions of various polymer composites (사출성형 금형 캐비티 내압 측정장치 개발 및 이를 이용한 새로운 복합재료의 점도 측정)

  • Kim, Yong-Hyeon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.877-887
    • /
    • 2015
  • We have proposed a new method for estimating the viscosity of the composite. In this paper, we have developed a device for measuring the injection mold cavity pressure. This makes it possible to verify the accuracy of the viscosity in CAE D/B in real time by measuring the melt pressure in the mold, and comparing this with the simulated pressure from the CAE analysis. Materials used in this study is a PP(Polypropylene), PP/LGF30%(Polypropylene/long glass fiber 50% composite) and PA66/LGF50%(Polyamide 6,6/long glass fiber 50% composite). The viscosity data for PP and PP long fiber composite have already been built, but the one for PA66 long-fiber composite does not exist because it is a newly developed material. Thus we obtained the viscosity curve of PA66/LGF50% by this system. Then, the viscosity curves from conventional viscometer were also compared with the viscosity obtained by the our method. And, we proved the accuracy of the CAE data of PP. In case of PP/LGF50% which is highly viscous and complex material, we improved the existing CAE data.because there was a difference between the measuring data and the CAE data.

Development of a battery management system(BMS) simulator for electric vehicle(EV) cars (EV용 배터리 관리시스템(BMS) 시뮬레이터 개발)

  • Park, Chan-Hee;Kim, Sang-Jung;Hwang, Ho-Suk;Lee, Hee-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2484-2490
    • /
    • 2012
  • This study reports on the development and performance verification of cell simulation boards of simulator and the embedded program for board control of the battery management system (BMS) of electric vehicle (EV) cars, which manages the next-generation automotive lithium-ion battery pack. Here, we have improved the speed of the simulator by using operational (OP) amplifier and transistors that were connected in series. In addition, using a digital analog converter (DAC) in each channel, we have improved the performance by channel-to-channel isolation (isolation) as compared to the traditional methods. Furthermore, by constructing a current-limiting protection circuit, one can be protected from disturbance and, by utilizing a precision shunt resistor for the current sensor, we have increased the precision of the current control. In order to verify the performance of the developed simulator, we have performed the experiment 10 times, with values ranging from 0.5 V to 5 V, and a voltage drop step of 0.5 V. Significance analysis of experimental data, and repeatability tests were performed, showing an average standard deviation of 0.001~0.004 V, indicating high repeatability and high statistical significance of the current method and system.

Initial Blank Optimization Design of Square Can Multistage Drawing considering Formability and Product Shape (사각형 캔 드로잉 다단 공정에서 성형성과 제품형상을 동시에 고려한 초기 블랭크 형상 최적 설계)

  • Park, Sang-Min;Kim, Dong Kyu;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2017
  • Multistage deep-drawing technology is used widely in the production of mobile phone battery cases to improve productivity and economy. To ensure adequate capacity and rigidity, such cases are fabricated as a rectangular cup with a high slender ratio. The multistage deep-drawing of a rectangular cup entails a high slender ratio, and the heights of the product sides may be non-uniform because of the complicated deformation mechanisms. This causes problems in product assembly that affects the surface quality of the case. This study examined a blank shape that minimizes the height variations of the product to resolve the aforementioned problems. Optimization design and analysis were performed to identify the shape that yields the least variation. The long and short sides of an oval blank were set as the design variables. The objective function was set to yield the lowest height difference, and the thickness reduction rate of the product was set to the target range. In addition, the height of the final shape was set as a constraint. The height difference was minimized successfully using the optimized design. The design process of the initial blank for all rectangular shapes can be automated in the future.

Analysis of Hygrothermal Performance for Standard Wood-frame Structures in Korea (국내 농어촌 표준 목조주택의 hygrothermal 성능 분석)

  • Chang, Seong Jin;Kang, Yujin;Wi, Seunghwan;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.440-448
    • /
    • 2016
  • As recent buildings become more air tight, the natural ventilation rate is significantly reduced and it leads to difficulty in removing accumulated moisture in buildings. Hot and humid weather in summer and the large amount of moisture caused by indoor activity are the major factors of moisture problem in Korea. The hygrothermal behavior of building environment has to be considered carefully to reduce condensation risk and mold growth potential, and comfortable indoor environment. In this study, we evaluated hygrothermal behavior of Standard Wood-frame Structure published in the Korea Rural Community Corporation Using WUFI simulation program. The results indicated that the total water contents of wood wall measured in 2014 was lower than wood wall in 2010. As a result of evaluation by separating the farming and fishing areas, Moisture problems in fishing area became larger. The walls had a significant impact on the relative humidity than the temperature each areas. Furthermore, excessive water content problem of the wood-based material was reduced in the wall that could be applied in the fishing villages by changing the outdoor finishing materials. And Mold growth risk on the interior materials could be removed through the different setting of the indoor temperature during summertime.

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.