• Title/Summary/Keyword: Moisture supply

Search Result 198, Processing Time 0.028 seconds

Effect of Different Curing Methods on the Unconfined Compressive Strength of Cemented Sand (양생방법에 따른 고결모래의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Ki-Young;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.207-215
    • /
    • 2009
  • Cemented soils or concrete are usually cured under moisture conditions and their strength increases with curing time. An insufficient supply of water to cemented soils can contribute to hydration process during curing, which results in the variation of bonding strength of cemented soils. In this study, by the consideration of in situ water supply conditions, cemented sand with cement ratio less than 20% is prepared by air dry, wrapped, moisture, and underwater conditions. A series of unconfined compression tests are carried out to evaluate the effect of curing conditions on the strength of cemented soils. The strength of air dry curing specimen is higher than those of moisture and wrapped cured specimens when cement ratio is less than 10%, whereas it is lower when cement ratio is greater than 10%. Regardless of cement ratio, air dry cured specimens are stronger than underwater cured specimens. A strength increase ratio with cement ratio is calculated based on the strength of 4% cemented specimen. The strength increase ratio of air dry cured specimen is lowest and that of wrapped, moisture, and underwater cured ones increased by square. Strength of air dry cured specimen drops to maximum 30% after wetting when cement ratio is low. However, regardless of cement ratio, strength of moisture and wrapped specimens drops to an average 10% after wetting. The results of this study can predict the strength variation of cemented sand depending on water supply conditions and wetting in the field, which can guarantee the safety of geotechnical structures such as dam.

Biodrying of municipal solid waste under different ventilation periods

  • Ab Jalil, N.A.;Basri, H.;Basri, N.E. Ahmad;Abushammala, Mohammed F.M.
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.145-151
    • /
    • 2016
  • Biodrying is a pre-treatment method that applies biological and mechanical concepts to drying solid waste. In Malaysia, municipal solid waste (MSW) is unseparated and contains a high level of moisture, making the use of technology such as solid waste burning unsuitable and harmful. MSW containing organic material can be processed naturally until the moisture content of the waste is reduced. This study on MSW biodrying was carried out on a laboratory scale to measure the percent moisture content reduction and to monitor temperature patterns under different ventilation periods. This work was conducted using five biodrying reactors volumes of 50 liters each. Reactors were ventilated for 5, 10, 15, 20 and 30 min every 3 h, with a 3 bar air supply. The duration of this process was 14 days for all samples. The results showed that the optimum ventilation time was 10 min, with an 81.84% reduction in moisture content, and that it required almost half of the electricity cost required for the 20 and 30 min ventilations.

Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis (물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Yang, Mi-Hye;Mun, Young-Sik;Hong, Eun-Mi;Ok, Jung-Hun;Hwang, Seonah;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

Growth and Quality of the Strawberry (Fragaria annanassa Dutch. cvs. 'Sulhyang') as affected by Complex Nutrient Solution Supplying Control System using Integrated Solar Irradiance and Substrate Moisture Contents in Hydroponics (수경재배 시 적산 일사량과 배지 수분 함량 복합 급액 제어에 의한 '설향' 딸기(Fragaria annanassa Dutch. cvs. 'Sulhyang')의 생육 및 품질)

  • Choi, Su Hyun;Kim, So Hui;Lee Choi, Gyeong;Jeong, Ho Jeong;Lim, Mi Young;Kim, Dae Young;Lee, Seon Yi
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2021
  • Strawberry cultivation in Korea is grown in greenhouse, but most farms manage their water supply using a timer control method based on the experience of growers. The timer control has problems in that it is difficult to consider the weather condition, the growth stage of crops, and the moisture content of the substrate, so that the crops cannot be managed at an optimal level, and the accuracy of cultivation management are lacking. The watering methods using integrated solar irradiance and substrate moisture contents are control systems that provide eco-friendly and precise water supply considering the growth conditions of crops. The purpose of this study was to compare the combined water supply control with integrated solar irradiance and substrate moisture contents and timer control method in hydroponic cultivation of strawberries using coir, and to set the optimal integrated solar irradiance level for complex water supply control. The irrigation system was automatically watered when it reached 100, 150, 250 J·cm-2 based on the external solar irradiance, and forced irrigation was performed at a substrate moisture content of less than 60% in all treatments. The amount of irrigation at once was 50 mL. The timer treatment was applied as a control. The smaller the level of integrated radiation to start watering, the greater the daily amount of irrigation. Both the fresh weight and dry weight per plant were higher in the complex irrigation control method than the timer control, and the 100 and 150 J·cm-2 treatment had the highest fresh weight, and the 100 J·cm-2 treatment showed a significantly higher dry weight. The yield was also significantly higher in the complex control method than in the timer, and the early yield increased as the level of integrated solar irradiance was smaller. The fresh weight of fruit was the lowest in the timer-controlled irrigation. As a result of this study, the possibility of combined control irrigation method using integrated solar irradiance and substrate moisture content was confirmed for precise water supply management of strawberries in hydroponics.

Evaluation method of Drought for Irrigation Reservoir (관개저수지의 가뭄평가 방법)

  • 김태철;이성희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • The severity of drought in (the) irrigation reservoir could be evaluated by the accumulative rainfall method, soil moisture content method, storage ratio method, and water supply restricted intensity method, etc. The storage ratio method would be the most reliable one for irrigation reservoir. The pattern of drought might be forecast with the most similar pattern of accumulative rainfall and/or storage ratio out of the file of past operation history.

Influence of Manufacturing Environment on Delamination of Mixed Cross Laminated Timber Using Polyurethane Adhesive

  • SONG, Dabin;KIM, Keonho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.167-178
    • /
    • 2022
  • To investigate the influence of manufacturing environment on bonding performance of mixed cross laminated wood (CLT) using polyurethane (PUR) adhesive, a boiling water soak delamination test according to the temperature and relative humidity was conducted. The 5-ply mixed CLT consisted of Japanese Larch for external and middle layer and yellow poplar for internal layer. The PUR adhesives with different opening times of 10 and 30 minutes were used. The mixed CLT was manufactured according to pressing times of PUR and manufacturing environments of summer and winter. In case of summer environment, the delamination rate of the mixed CLT with pressing time of 4 hours using a PUR adhesive with open time of 10 minutes met the requirements of KS F 2081. In case of winter environment, the delamination rate of the mixed CLT didn't meet the requirements of KS standard. However, it was possible to confirm the effect of improving the adhesive performance by adjusting the pressing time according to the open time of the adhesive under the manufacturing conditions. The delamination rate of CLT with open time 30 minutes PUR, manufactured by indirect moisture supply methods was 11.2% better than direct moisture supply methods. As a result of delamination test in the same condition of relative humidity and adhesive, it was found that the temperature of manufacturing environment influences the adhesive performance.

A Study on the Development of Induction Heating Mass Production System for Moisture Removal of Secondary Battery (이차전지 수분 제거용 유도가열 양산 시스템 개발에 관한 연구)

  • Wangeun Ji;Sunghwan Kim;Haiyoung Jung;Seok-Hyun Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.42-48
    • /
    • 2023
  • Abstract: In this study, an induction heating system using resonance is developed to remove remaining moisture and contaminations which could be generated during fabricating secondary batteries. This system is composed of power supply and induction coil. Power supply needs an oscillator, zero crossing detection, frequency tracking function, and induction coil needs a dummy coil to obtain a uniform temperature distribution. It is very important to obtain a uniform heating temperature distribution of battery cell case in the induction heating system before pouring electrolyte into battery cell. Experimental results show a temperature distribution deviation of below 1℃ in the external position of battery cell cases. As well, the temperature of battery cell itself shows distribution of 40℃±3℃.

Adjusting moisture contents of the substrates on the mushroom bottle cultivation by the device Load cell (로드셀을 장치한 버섯 병재배용 배지의 수분조절 방법)

  • Cheong, Jong-Chun;Lee, Chan-Jung;Moon, Ji-Won;Kweon, Jae-Gun;Kim, Hyuck-joo
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.233-236
    • /
    • 2015
  • This report is the result of devising a method for utilizing the device of the load cell to maintain a constant water content of the medium every day to prepare a cultural substrates with the mixer for growing mushrooms bottle cultivation. A load cell was device under the medium mixer. It is developed when the device reaches the weight calculated as amount of substrate bottled and number of the bottle, it is automatically terminated by water injection. In addition, measuring the water content of each medium and the total weight of the medium reaches the target moisture content were calculated by using the program Cheong et al. (2015). Enter the total weight of the medium on the display unit of the load cell, when starting the water supply to reach the weight-based mixing media, the water supply is stopped. This method can improve the convenience by reducing the user's trouble in repeated work medium prepared by automating water supply. The suitable moisture content of the mixed medium for some kind of mushroom can be improved by the composition accuracy. And mycelial culture period, primordial period, mushroom growing period is maintained even of the medium can be produced stably. Therefore, it is possible to achieve a stable management of the mushroom farm according to mushroom quality and quantity stable throughout the year.

Experimental Evaluation of Cohesion Properties for Various Coals

  • Kim, Minsu;Lee, Yongwoon;Ryu, Changkook;Park, Ho Young;Lee, Hyun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.279-284
    • /
    • 2016
  • Assessing the handling properties of coal becomes a major issue for the operation of a fuel supply system in power plants, due to the increased types of coal imported into Korea. In this study, the cohesion strengths of 13 bituminous and sub-bituminous coals from different countries were tested by measuring the amount of force that leads to a failure of consolidated particles. The particle size was in the range of 0.1-2.8 mm, which represents the coarse particles before pulverization. While the cohesion strength was proportional to the compression force in the tested range, the effects of the surface moisture content and the weight fraction of fines were crucial for cohesive coals. At fixed conditions of surface moisture and particle size, large variations were found in the cohesion propensity between coals. For coals of 0.1-0.5 mm with the moisture added close to the critical value, cohesive coals had the density over $900kg/m^3$ after consolidation. The cohesion propensity was not correlated with the basic properties of coals with sufficient statistical significance.

Effects of different soil moisture conditions on growth, yield and stress index of adzuki bean from paddy field cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.337-337
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Excessive soil moisture may cause nutrient deficiencies and oxygen deficiency. Excessive soil water during crop growth stages results in decrease of yields. In Korea, the largest agricultural lands are paddy fields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to success this policy, it is necessary to fully understand crop response to excessive soil moisture condition from paddy field soils. Adzuki bean is one of major legumes which provide protein in daily diet. Adzuki bean has been well know its weakness to excessive soil moisture condition, In order to obtain optimal yields of adzuki bean from paddy field cultivation, it is necessary to understand response of adzuki bean under different soil moisture conditions. This study investigated characteristics of growths, yields and response degree of water stress from adzuki bean. Three cultivars were selected for this study; Chungju, Hongeon, and Arari. All adzuki beans were cultivated in a paddy field which was divided into three sections with different soil moistures. The paddy field was located in Milyang, Gyeongsangnam during 2016. One section of the paddy field had the greatest average soil moisture content as 35.1% during adzuki bean cultivation (very poor). The second greatest soil moisture section had 32.6% (somewhat poor) and the smallest soil moisture section had 28.9% of soil moisture (somewhat well). During cultivation of three cultivar adzuki beans, soil moisture contents and groundwater levels were monitored. All the characteristics of growth and yield components were measured; height, thickness, 100 seed weights etc. Stress index values were calculated by Stress Day Index (SDI). All cultivars had the greatest yields from somewhat well section. Chungju had the greatest yields throughout all three sections compared to other cultivars. Chungju had 81% greater yield than Hongeon which had the smallest yield from somewhat well section. Arari set in middle from all sections. However there was no significant differences yields from very poor and somewhat poor sections. Leaf SPAD values tended to decrease and stable carbon isotope values increased as soil moisture increased. However, Chungju had no difference across different soil moistures in SPAD and stable carbon isotope values, while Hongeon had the greatest differences across sections. These trends followed by SDI values. Chungju had the smallest SDI values compared to other cultivars, which meant that Chungju was the strongest tolerance against excessive soil moisture than other cultivars. All three cultivars showed severe decrease of yields from very poor and somewhat poor sections. Arari and Hongeon showed great decrease from somewhat well section compared to yields from upland soil. These two cultivars may not be proper cultivating in paddy fields. In conclusion, adzuki bean is very sensitive to soil moisture condition and detailed soil managements are required to obtain optimal yields of adzuki bean from paddy field cultivation.

  • PDF